INDICE

1.	RESUMEN	1
2.	INTRODUCCIÓN	2
3.	REVISION BIBLIOGRÁFICA	3
	3.1.Generalidades sobre Anticuerpos Antifosfolípidos	3
	3.2. Anticuerpos Antifosfolípidos	5
	3.2.1. Anticuerpos Anti- β_2 GPI	7
	3.3. Mecanismos Trombogénicos	9
	3.3.1. Alteración de Reacciones Hemostáticas	9
	3.3.2. Activación Celular	12
	3.3.2.1. Activación Plaquetaria	12
	3.3.2.2. Activación de Células Endoteliales y Monocitos	14
	3.3.3. Activación del Sistema del Complemento	19
	3.4. Protocolos de Purificación de β_2 GPI	19
	3.5. Inducción de Anticuerpos Antifosfolípidos	23
4.	OBJETIVOS	25
	4.1. Objetivo General	25
	4.2. Objetivos Específicos	25
5.	MATERIALES Y METODOS	26
	5.1. Purificación de β_2 GPI Humana	26
	5.1.1. Protocolo 1	26
	5.1.2. Protocolo 2	27
	5.2. Cuantificación de Proteínas	28

	5.3. Electroforesis en Gel de Poliacrilamida (PAGE)	28
	5.4. Programa de Inmunización	31
	5.5. ELISA β_2 GPI	34
	5.6. Western Blot	35
6.	RESULTADOS	40
	6.1. Purificación de β_2 GPI	40
	6.1.1. Fracciones de Protocolo 1	40
	6.1.2. Fracciones de Protocolo 2	42
	6.1.3. Protocolo 1 VS Protocolo 2	44
	6.2. Cuantificación de Proteínas	45
	6.3. Electroforesis de Proteínas (PAGE)	45
	6.4. ELISA β_2 GPI	48
	6.5. Western Blot	50
7.	DISCUSIÓN	53
8.	CONCLUSIÓN	56
9.	BIBLIOGRAFÍA	57

INDICE DE FIGURAS

Figura 1. Estructura molecular de β_2 GPI	8
Figura 2 . Estructura del dominio V de β_2 GPI	8
Figura 3. Mecanismo de inhibición de la proteína C activada por el complejo	
anti eta_2 GPI/ eta_2 GPI	10
Figura 4. Efectos de los aFL en la formación de trombos en ratones deficientes	
de Anexina A2 (A2 -/-) y Anexina A2	11
Figura 5. Efectos de los aFL en la actividad del FT en la arteria carótida en ratones	
con Anexina A2 (A2-/-) y sin Anexina A2 (A2+/+)	11
Figura 6. Posibles vías de señales intracelulares de la activación plaquetaria por	
aFL	13
Figura 7. Expresión de factor tisular en monocitos y PCA en distintos tipos de	
Plasmas	15
Figura 8. Efectos de aFL de isotipo IgG en la expresión de VCAM- 1, E-Selectina,	
e ICAM- 1 en HUVECS	16
Figura 9. Adhesión de leucocitos al endotelio en el músculo cremaster en ratón	17
Figura 10. Análisis de los efectos de aFL en la formación de un trombo	18
Figura 11. Modelo de cromatografía por afinidad	20
Figura 12 . Gel de electroforesis de purificación de β_2 GPI en dos pasos	22
Figura 13 . Patrón electroforético de β_2 GPI	23
Figura 14. Instrucciones de uso y armado para el soporte de gel y cámara de	
electroforesis BIO-RAD	31
Figura 15 . Modelo de ratón utilizado en ensayos tipo C57BL/6	32

Figura 16 . Método de inmunización de ratones C57BL/6	32
Figura 17. Vena cava de ratón C57BL/6	33
Figura 18. Exposición de vena cava y órganos internos de ratón C57BL/6	34
Figura 19. Sistema utilizado para la inmunotransferencia a la membrana de	
nitrocelulosa	36
Figura 20. Esquema de disposición del cassete de transferencia	37
Figura 21. Disposición de la membrana en el cassette para conseguir la emisión de	
quimioluminiscencia durante el revelado de membrana	39
Figura 22. Gráfico absorbancias de fracciones protocolo 1	42
Figura 23. Gráfico absorbancias de fracciones protocolo 2	44
Figura 24 . Comparación absorbancias de fracciones de β_2 GPI de los dos	
protocolos de purificación	45
Figura 25. Gel de electroforesis de poliacrilamida (PAGE) de 4 fracciones obtenida	ıs
a partir del protocolo 2	46
Figura 26. Comparación de patrones electroforéticos de purificados del protocolo 1	y
protocolo 2	47
Figura 27 . Gráfico absorbancias de 11 ratones C57BL/6 inmunizados con β_2 GPI	
(R1 a R11) y dos ratones controles (C1 y C2)	48
Figura 28. Promedio de absorbancias obtenidas desde plasma de ratones	
inmunizados versus plasma de ratones controles	49
Figura 29 . Absorbancias fracciones purificadas de β_2 GPI (P1 a P4) y fracciones	
"No unidas" (N1 y N2)	50
Figura 30. Promedio de absorbancias obtenidas de las fracciones purificadas y de	
las fracciones "No unidas"	50
Figura 31. Membrana de nitrocelulosa teñida con Rojo Ponceau 0,1% a partir del	
gel de electroforesis en poliacrilamida	51
Figura 32. Gel de electroforesis en poliacrilamida teñido con Azul de Coomasie	
G250 luego de la transferencia a membrana de nitrocelulosa	51
Figura 33. Western Blot. Reactividad de los ratones C57BL/6 inmunizados y	
plasma de pacientes con aFL+	52

INDICE DE TABLAS

TABLA 1. Volúmenes utilizados de los reactivos para preparar las soluciones del	
gel concentrador y del gel separador	29
TABLA 2 . Absorbancias a 280 nm de las 20 fracciones de β_2 GPI colectadas	
desde la columna de Haparina-sefarosa según protocolo 1	41
TABLA 3 . Absorbancias a 280 nm de las 20 fracciones de β_2 GPI colectadas desde	
la columna de Heparina–sefarosa según protocolo 2	43