ÍNDICE DE CONTENIDOS

ÍNDICE		ENIDOS	1	
ÍNDICE DE TABLAS				
ÍNDICE DE FIGURAS			4	
RESUMEN			7	
ABSTR	ACT		8	
INTROE	UCCIÓN		8	
1.	IMPOR PRODU	IMPORTANCIA DEL ESTUDIO DE LAS ENZIMAS CMAAT PARA LA PRODUCCIÓN DE AROMA EN <i>Cucumis melo.</i>		
2.	EL ARO	MA EN EL FRUTO.	11	
3.	BIOSÍN	TESIS DE ÉSTERES EN <i>Cucumis melo.</i>	12	
4.	 MÉTODOS COMPUTACIONALES PARA EL ANÁLISIS ESTRUCTURAL DE LAS ENZIMAS CMAAT. 			
	4.1.	MODELAMIENTO COMPARATIVO.	15	
	4.2.	MINIMIZACIÓN DE ENERGÍA.	19	
	4.3.	DINÁMICA MOLECULAR.	20	
	4.4.	ACOPLAMIENTO PROTEÍNA-LIGANDO O "DOCKING".	22	
	4.5.	POTENCIAL ELECTROESTÁTICO (ADAPTIVE POISSON-BOLTZMANN SOLVER, APBS).	24	
HIPÓTE	SIS		26	
OBJETI	VO GENE	RAL	27	
OBJETI	VOS ESPE	ECÍFICOS	27	
MATER	IALES Y N	IÉTODOS	28	
1.	MODEL	AMIENTO COMPARATIVO DE LAS ENZIMAS CmAAT1-4.	28	
2.	DINÁMI ESTRU	CA MOLECULAR Y REFINAMIENTO DE LAS CTURAS GENERADAS.	29	
3.	INTERA	CCIÓN PROTEÍNA-LIGANDO "DOCKING".	31	
4.	MUTAC	IÓN Thr/Ala268 EN CMAAT1 Y Ala/Thr268 EN CmAAT2.	33	
5.	POTEN	CIAL ELECTROSTÁTICO.	34	
6.	DINÁMI CmAAT	CA MOLECULAR PARA LOS COMPLEJOS 1/LIGANDOS Y CmAAT1-Ala268/LIGANDOS.	35	

RESULTADOS

RESULTADOS			37		
	 MODELAMIENTO COMPARATIVO Y VALIDACIÓN DE LAS ENZIMAS CMAAT1-4. 				37
		1.1.	BÚSQL	JEDA DE TEMPLADOS.	37
		1.2.	OBTEN DE LOS	ICIÓN Y ANÁLISIS ESTRUCTURAL S MODELOS.	38
	1.3. REFINAMIENTO Y VALIDACIÓN DE LOS MODI		AMIENTO Y VALIDACIÓN DE LOS MODELOS.	41	
			1.3.1.	REFINAMIENTO DE LOS MODELOS MEDIANTE DINÁMICA MOLECULAR.	41
			1.3.2.	ALINEAMIENTO ESTRUCTURAL.	41
			1.3.3.	EVALUACIÓN ESTEREOQUÍMICA DE LAS ESTRUCTURAS GENERADAS.	42
			1.3.4.	EVALUACIÓN ENERGÉTICA DE LAS ESTRUCTURAS GENERADAS.	43
			1.3.5.	EVALUACIÓN DE LA COMPATIBILIDAD 1D-3D DE LAS ESTRUCTURAS GENERADAS.	45
2	2.	INTERA	CCIÓN I	PROTEÍNA LIGANDO "DOCKING".	46
3	 ANÁLISIS E INTERACCIÓN PROTEÍNAS MUTADAS-LIGANDOS; CmAAT1-Ala268 Y CmAAT2-Thr268, MEDIANTE ACOMPLAMIEN MOLECULAR. 			ERACCIÓN PROTEÍNAS MUTADAS-LIGANDOS; 3 Y CmAAT2-Thr268, MEDIANTE ACOMPLAMIENTO	53
		3.1.	ALINE	AMIENTO ESTRUCTURAL.	53
		3.2.	ANÁLIS	SIS DE POTENCIAL ELECTROESTÁTICO.	55
		3.3.	ACOPL Y CmA	AMIENTO MOLECULAR PARA CmAAT1-Ala268 AT2-Thr268.	57
		3.4.	DINÁM CmAA	ICA MOLECULAR PARA LOS COMPLEJOS [1-LIGANDOS Y CmAAT1/Ala268-LIGANDOS.	63
DISCI	DISCUSIÓN				71
CONC	CLUS	SIÓN			80
BIBLIOGRAFÍA			82		
ANEXOS				87	

ÍNDICE DE TABLAS

		Página
TABLA 1:	Porcentaje de identidad de las distintas isoformas de Alcohol Acil Transferasa en <i>Cucumis melo</i> .	13
TABLA 2:	Actividad de proteínas recombinantes para CmAAT1-3.	32
TABLA 3:	Actividad de proteínas recombinantes para CmAAT1-Ala268 y CmAAT2-Thr268.	34
TABLA 4:	Extracto de los resultados obtenidos por la herramienta web <i>PSIPRED</i> .	37
TABLA 5:	Números y porcentajes de residuos en regiones favorables y desfavorables.	43
TABLA 6:	Energías de interacción de las cuatro isoformas de los sustratos de alcohol y acil-CoA.	46
TABLA 7:	Complejos utilizados para las simulaciones de Docking.	49
TABLA 8:	Valores de actividad y energías de interacción.	49
TABLA 9:	Energías de interacción de las proteínas mutadas con los sustratos de alcohol y acil-CoA.	57
TABLA 10:	: Valores de actividad y energías de interacción.	60

ÍNDICE DE FIGURAS

		Página
FIGURA 1:	Exportación y crecimiento del sector agropecuario.	9
FIGURA 2:	Reacción de esterificación.	12
FIGURA 3:	Pasos del modelamiento comparativo.	18
FIGURA 4:	Campo eléctrico.	24
FIGURA 5:	Esquema para la construcción de modelos tridimensionales mediante modelamiento comparativo.	29
FIGURA 6:	Sistema final para la simulación molecular.	30
FIGURA 7:	Estructura de los ligandos.	31
FIGURA 8:	Estrategia utilizada en estudios de acoplamiento molecular.	32
FIGURA 9:	Estructura de las cuatro isoformas de CmAAT.	38
FIGURA 10:	Presencia del canal de solvente.	39
FIGURA 11:	Sitio activo de CmAAT1, CmAAT3 y CmAAT4.	40
FIGURA 12:	Ubicación del residuo de Ala268 en CmAAT2.	40
FIGURA 13:	Gráfico de RMSD durante la simulación de dinámica molecular para las cuatro isoformas.	41
FIGURA 14:	Alineamiento estructural de las cuatro isoformas de CmAAT1-4.	42
FIGURA 15:	Gráficos obtenidos desde ProSA (1).	44
FIGURA 16:	Gráficos obtenidos desde ProSA (2).	44
FIGURA 17:	Gráficos de análisis realizados con Verify3D.	45
FIGURA 18:	Posicionamiento de los sustratos de alcoholes.	47

4

FIGURA 19:	Posicionamiento de las mejores conformaciones de sustratos de acil-CoA.	48
FIGURA 20:	Gráfico de distancias promedio del sitio activo de las cuatro enzimas hacia los ligandos de acil-CoA y alcohol.	50
FIGURA 21:	Posicionamiento de las mejores conformaciones de sustratos de acil-CoAs y alcoholes.	51
FIGURA 22:	Posicionamiento y entrada de los sustratos en el canal de solvente.	52
FIGURA 23:	Posicionamiento de los sustratos en el canal de solvente.	53
FIGURA 24:	Alineamiento estructural de las proteínas silvestres y las mutantes	54
FIGURA 25:	Canal de solvente en las proteínas nativas y mutadas.	55
FIGURA 26:	Representación del potencial electroestático.	56
FIGURA 27:	Posicionamiento de las mejores conformaciones de sustratos de alcoholes y acil-CoAs luego de las mutaciones.	58
FIGURA 28:	Gráfico de distancias para los sustratos de alcohol y acil-CoA luego de las mutaciones.	59
FIGURA 29:	Gráfico de energía de los complejos proteína_alcohol_acil-CoA.	61
FIGURA 30:	Gráfico de distancias promedio de los ligandos con los residuos del sitio activo.	62
FIGURA 31:	Posicionamiento de los sustratos en el canal de solvente.	63
FIGURA 32:	Gráfico de energía total calculada durante la trayectoria utilizando el módulo NAMD Energy de VMD.	64
FIGURA 33:	Gráfico de RMSD durante la trayectoria de dinámica molecular (1).	64
FIGURA 34:	Gráfico de RMSD durante la trayectoria de dinámica molecular (2).	65

FIGURA 35.	Gráfico de puentes de hidrógeno durante la trayectoria de dinámica molecular.	66
FIGURA 36:	Ubicación de los ligandos en el canal de solvente al comienzo de la simulación molecular.	66
FIGURA 37:	Participación del residuo Ser363 en la interacción con los ligandos dentro del canal de solvente.	67
FIGURA 38:	Participación del residuo Ser363 y molécula de agua en la orientación y posicionamiento hexanol.	68
FIGURA 39:	Interacción de hexanol con acetil-CoA.	68
FIGURA 40:	Distancia entre His161 y hexanol durante la trayectoria de dinámica molecular.	69
FIGURA 41:	Posicionamiento de los sustratos en CmAAT1-Ala268 durante la simulación de dinámica molecular.	69
FIGURA 42:	Distancias de los ligandos con los residuos del sitio activo durante la simulación de dinámica molecular.	70
FIGURA 43:	Distancias de hexanol hacia Ser363 y hexanol hacia acetil-CoA durante la simulación molecular.	78