ÍNDICE DE CONTENIDOS

	I	Página	
ÍNDICE DE CONTENIDOS			
ÍNDICE DE TABLAS			
ÍNDICE DE FIGURAS			
RESUMEN			
ABSTRACT			
1	INTRODUCCIÓN	8	
1.1	Estudio de la maduración en frutos.	8	
1.2	El fruto de <i>Physalis peruviana</i> .	8	
1.3	Formación del aroma en los frutos.	9	
1.4	Caracterización de la AAT en P. peruviana.	10	
1.5	Aproximación bioinformática: El modelamiento comparativo.	11	
1.6	Análisis y validación del modelamiento comparativo.	11	
1.7	Optimización de un modelo tridimensional: Cálculos de minimización de energía.	le 12	
1.8	Dinámica molecular.	12	
1.9	Interacción de acoplamiento molecular (Docking): posicionamiento		
	ligando-proteína.	14	
2.0	HIPÓTESIS	15	
3.0	OBJETIVO GENERAL	16	
3.1	OBJETIVOS ESPECÍFICOS	16	
4.0	METODOLOGÍA	17	

4.1	Modelamiento Comparativo.	17
4.1.1	Estudio de la secuencia obtenida.	17
4.2	Dinámica molecular y minimización de energía.	19
4.3	Interacciones de acoplamiento molecular (Docking).	21
5	RESULTADOS	23
5.1	Análisis del gen AAT proveniente de P. peruviana.	23
5.2	Estudio filogenético de la enzima phpAAT1.	24
5.3	Obtención de la estructura tridimensional de la proteína.	24
5.4	Modelamiento comparativo de la enzima PhpAAT1.	25
5.5	Minimización de energía de la enzima PhpAAT1.	27
5.6	Validaciones estructurales de la enzima PhpAAT1.	28
5.7	Modelo estructural final de la enzima PhpAAT1.	31
5.8	Comparación de canales de solventes en AATs	32
5.9	Docking o interacción proteína ligando.	34
5.10	Estudio de Dinámica Molecular.	35
5.11	Potencial electroestático o mapeo de densidad electrónica.	38
6	DISCUSIÓN.	42
7	CONCLUSIÓN.	49
8	REFERENCIAS	50

ÍNDICE DE TABLAS

		Página
Tabla 1.	Sustratos empleados en el análisis de Docking rígido y	
	flexible.	22
Tabla 2.	Comparaciones entre canales de solventes en AATs	33
Tabla 3.	Energías de interacción obtenidas en el docking.	35
Tabla 4.	Energías de interacción obtenidas en el docking	
	para los complejos.	36

ÍNDICE DE FIGURAS

		Página
Fig. 1	Frutos de <i>Physalis peruviana</i> en estado maduro.	8
Fig. 2	Reacción de esterificación de la AAT.	9
Fig. 3	Ecuación de campo de fuerza.	13
Fig. 4	Pasos durante el modelamiento comparativo de estructuras	
	proteícas.	18
Fig. 5	Ecuaciones de movimiento de Newton para una partícula i.	19
Fig. 6	Fragmento del alineamiento múltiple de secuencias de	
	aciltransferasas.	23
J	Árbol filogenético de enzimas pertenecientes a la superfamilia de aciltransferasas.	24
Fig. 8	Predicción de la estructura secundaria para la enzima PhpAAT1.	25
Fig. 9	Alineamiento local usando BLAST.	26
Fig. 10	Alineamiento global usando ClustalW entre PhpAAT1 y 2BGH.	26
Fig. 11	Modelo estructural trabajado con VMD.	27
Fig. 12	Gráfico de Ramachandran.	28
Fig. 13	Gráfico ProSA de energías enlazantes.	29
Fig. 14	Gráfico Prosa de energías enlazantes.	30
Fig. 15	Gráfico de ANOLEA de energías no enlazantes.	30
Fig. 16	Alineamiento estructural PhpAAT1 v/s 2BGH.	31
Fig. 17	Zoom al canal de solvente de la enzima PhpAAT1.	32
Fig. 18	Ubicación del dominio HXXXD.	32 4

Fig. 19 Comparaciones entre canales de solventes en AATs.	33
Fig. 20 Sitios de unión de los ligandos.	35
Fig. 21 Mejores conformaciones de pares de sustratos.	37
Fig. 22 RMSD de la enzima PhpAAT1 post dinámica molecular.	38
Fig. 23 Cantidad de puentes de hidrógeno presentes en la enzima PhpAAT durante la dinámica molecular.	1 38
Fig. 24 RMSD para sustratos tipo alcohol dentro del canal de solvente.	39
Fig. 25 RMSD para sustratos tipo acil-CoAs dentro del canal de solvente.	40
Fig. 26 Seguimiento a la trayectoria obtenida por Dinámica Molecular para e mejor par de sustratos (Butanol + Hexanoil-CoA)	el 41
Fig. 27 Distancias obtenidas en la Dinámica Molecular para el mejor par de sustratos (Butanol + Hexanoil-CoA)	42
Fig. 28 Distancias obtenidas en la Dinámica Molecular para el peor par de sustratos (Hexanol + Acil-CoA)	43
Fig. 29 Mapa de densidad electrónica de la enzima PhpAAT1.	44
Fig. 30 Mapa de densidad electrónica del canal de solvente de la enzima PhpAAT1.	45
Fig. 31 Disposición atómica del dominio HXXXD.	48
Fig. 32 Disposición atómica del canal de solvente de la enzima PhpAAT1.	50