II.- INDICE GENERAL

I AGRADECIMIENTOS	2
II INDICE GENERAL	4
III INDICE DE FIGURAS	6
IV INDICE DE GRAFICAS	7
V RESUMEN	8
VI ABSTRACT	. 9
1 INTRODUCCIÓN	10
1.1 Antecedentes Generales	. 10
1.1.1 Función y Composición de la Membrana Celular	. 11
1.1.2 Canales Iónicos y Mecanismos de Transporte a través	
de la Membrana Celular	. 12
1.1.3 Potencial de Membrana y Potencial de Acción	. 13
1.1.4 Canales de Potasio (K ⁺) Dependiente de Voltaje	15
1.1.4.1 Filtro de selectividad	. 17
1.1.4.2 Cavidad Interna y Compuerta de Apertura	. 19
1.1.4.3 Sensor de Voltaje	20
1.2 Antecedentes Específicos	21
1.2.1 Conductancia	21
1.2.2 Efectos de los mutantes P475D y P475Q en la conductancia del canal	. 22
1.3 Hipótesis	27
1.3.1 Hipótesis Alternativa	27
1.4 Objetivos	27
1.4.1 Objetivos Generales	27
1.4.2 Objetivos Específicos	28
2 METODOLOGÍA	29
2.1 Fundamento Teórico de los Métodos Computacionales	29
2.1.1 Dinámica Molecular	29
2.1.2 Algoritmo de HOLE	31

2.1.5 Potencial Electrostático (Adaptive Poisson-Boltzmann Solver, APBS) 33	
2.2 Descripción de los Métodos Computacionales	5
2.2.1 Modelamiento Comparativo	5
2.2.1.1 Tetramerización del Canal <i>Shaker</i>	3
2.2.1.2 Incorporación de iones en el filtro de selectividad)
2.2.2 Modelamiento del Sistema Molecular 40)
2.2.2.1 Construcción del PSF (Protein Structure File))
2.2.2.2 Adición de Membrana Lipídica41	-
2.2.2.3 Adición de Caja de Solvente	1
2.2.2.4 Adición de Concentración Iónica	2
2.2.3 Simulación Molecular	3
2.2.3.1 Minimización Energética	1
2.2.3.1 Equilibrio Termodinámico	1
2.2.4 Validación de los Modelos45	5
2.2.5 Cálculos de HOLE45	5
2.2.6 Cálculos de PMF/APBS (Potential of Mean Force)45	5
2.2.7 Cálculos de Potencial Electrostático	5
2.2.8 Cálculos de Densidad Iónica4	7
2.2.9 Representación Gráfica y Análisis Estadístico47	7
3 RESULTADOS	8
3.1 Generación de Modelos Comparativos48	3
3.2 Trayectorias de Dinámica Molecular49)
3.3 Análisis en la Validación de Modelos	1
3.4 Análisis con HOLE	3
3.5 Análisis de PMF/APBS	9
3.6 Análisis de Potencial Electrostático	1
3.7 Análisis de Densidad Iónica	3
4 DISCUSIÓN	4
5 CONCLUSIONES	9
6 REFERENCIAS	1
7ANEXOS	6

III.- INDICE DE FIGURAS

Figura 1.1: Representación de la Membrana Celular	
Figura 1.2: Estados conformaciones de un canal iónico13	
Figura 1.3: Estructura de la membrana de una fibra nerviosa 15	
Figura 1.4: Representación de las subunidades α y β de un canal Kv	
Figura 1.5: Filtro de selectividad	
Figura 1.6: Sitios de unión a iones K ⁺	
Figura 1.7: Cavidad Interna	
Figura 1.8: Sensor de Voltaje	
Figura 1.9: Alineamiento del segmento S6 de diferentes canales de K ⁺ 23	
Figura 1.10: (A) Corriente Iónica v/s Voltaje en el canal <i>Shaker</i>	
Figura 1.10: (B) Conductancia v/s Voltaje en <i>Shaker</i>	
Figura 1.10: (C) y (D) Conductancia v/s Voltaje en distintas mutantes de <i>Shaker</i> 24	
Figura 1.11: Sitio adicional de unión a K ⁺	
Figura 1.12: Sitios de unión a K ⁺ en el vestíbulo intracelular	
Figura 2.1: Representación de un sistema molecular utilizando PBC	
Figura 2.2: Radio máximo para el algoritmo de HOLE	
Figura 2.3: Planos paralelos en el algoritmo de HOLE	
Figura 2.4: Campo Eléctrico	
Figura 2.5: Representación del Potencial Electrostático	
Figura 2.6: (A) Construcción de loops con Rosetta	
Figura 2.6: (B) Modelo estructural de Kv1.2 en su conformación abierta y cerrada 36	
Figura 2.7: Alineamiento usado en el modelamiento comparativo	
Figura 2.8: Tetramerización del canal de K ⁺ <i>Shaker</i>	
Figura 2.9: Distribución de iones propuesta por Morais-Cabral	
Figura 3.0: Membrana Lipídica POPC	
Figura 3.1: Caja de Solvente	
Figura 3.2: Distribución Iónica a 110mM de KCl43	
Figura 3.3: Representación Implícita de la Membrana y la caja de Solvente	

Figura 3.4: Densidad de Iones en Poro	47
Figura 4.0: Modelos comparativos del canal de K ⁺ Shaker	48
Figura 4.1: Simulación del canal Shaker en condiciones fisiológicas.	49
Figura 4.2: Superficie de HOLE del Poro Iónico (<i>Shaker_</i> Closed)	54
Figura 4.3: Superficie de HOLE del Poro Iónico (P475D_Closed)	55
Figura 4.4: Superficie de HOLE del Poro Iónico (Shaker_Open)	56
Figura 4.5: Superficie de HOLE del Poro Iónico (P475D_Open)	57
Figura 4.6: Superficie de HOLE del Poro Iónico (P475Q_Open)	58
Figura 4.7: Poro Iónico de mutante P475D en estado abierto	59
Figura 4.8: Mapas de Potencial Electrostático	62
Figura 4.9: Sitio S6 de unión a potasio	63

IV.- INDICE DE GRÁFICAS

Gráfica 1.0: Energía de Minimización v/s Time Step	50
Gráfica 1.1: Energía de Equilibrado v/s Time Step	50
Gráfica 1.2: Energía de Equilibrado v/s Time Step	51
Gráfica 2.0: Perfil de Energía DOPE v/s Residuo (Shaker_Open)	52
Gráfica 2.1: Perfil de Energía DOPE v/s Residuo (Shaker_Closed)	53
Gráfica 3.0: Radio del Poro Iónico v/s Eje Z (Shaker_Closed)	54
Gráfica 3.1: Radio del Poro Iónico v/s Eje Z (P475D_Closed)	55
Gráfica 3.2: Radio del Poro Iónico v/s Eje Z (Shaker_Open)	56
Gráfica 3.3: Radio del Poro Iónico v/s Eje Z (P475D_Open)	57
Gráfica 3.4: Radio del Poro Iónico v/s Eje Z (P475Q_Open)	58
Gráfica 4.0: Energía Electrostática de Unión v/s Coordenada de Reacción	60
Gráfica 4.1: ΔΔG de Unión v/s Coordenada de Reacción	60
Gráfica 5.0: Diferencia de Potencial Electrostático respecto a la wildtype v/s Eje Z	61
Gráfica 6.0: Densidad Iónica v/s Eje Z	53