Table of contents

TABLE OF CONTENTS	Ι
LIST OF TABLES	III
	IV
	IV VII
LIST OF ABBREVIATIONS	VII
SUMMARY	VIII
RESUMEN	IX
1. INTRODUCTION	1
1.1 Problem definition	3
1.2 Hypothesis and objectives of research	4
2. LITERATURE REVIEW	5
2.1 CDM market characteristics	5
2.1.1 Global carbon dioxide market	5
2.1.1.1 Potential sellers	8
2.1.1.2 Potential buyers	9
2.1.2 Latin American perspective	11
2.1.3 Carbon price trends	11
2.2 Modalities and rules of CDM projects	13
2.2.1 Definitions	13
2.2.2 Addressing non-permanence of afforestation projects	15
2.2.3 Transaction costs	17
2.3 Carbon sequestration costs in forest	19
2.3.1 Profitability and costs of afforestation projects in Patagonia	19
2.3.2 Carbon sequestration costs	20
3. MATERIALS AND METHODS	22
3.1 Study area	23
3.1.1 Environment characteristics of the Andean Patagonia	24
3.1.2 Patagonia forestry sector features	24
3.2. Data collection	26
3.2.1 Data source	26
3.2.2 Interview characteristics	26
3.3 Data processing	27
3.4 Forestry analysis	28
3.4.1 Silvicultural analysis and management	28
3.4.2 Forest products	29
3.4.3 Biomass and carbon sequestration	30
3.4.4 Baseline assumptions	31
3.5 Arrangements and assumptions	31

3.5.1 CDM arrangements	31
3.5.1.1 Transaction costs	31
3.5.1.2 Carbon prices	32
3.5.1.3 Calculation of CERs	33
3.5.1.4 Project area	34
3.5.2 Economic assumptions	35
3.5.2.1 Decision maker scenarios	35
3.5.2.2 Discount rate and inflation	35
3.5.2.3 Opportunity costs	37
3.5.2.3 Land price	37
3.5.3 Risk assumptions	38
3.6 Economic calculations	38
3.6.1 Profitability indicators	38
3.6.2 Critic points	39
3.6.3 Carbon sequestration costs	39
3.7 Materials and methods' summary	40
4. RESULTS	41
4.1. Profitability of ponderosa pine afforestation based on timber sales	41
4.2 Certified emission reduction analysis	42
4.3. Transaction costs	43
4.4 Effect of accounting methods	45
4.5 Minimum profitable project area	50
4.6 Carbon sequestration costs	51
4.7 Sensitivity analysis	52
4.7.1 Changes in the discount rate	52
4.7.2 Changes in input and output prices	53
4.7.3 Changes in the project scale	55
5. DISCUSSION AND CONCLUSIONS	57
5.1 Limitations of the present research	57
5.2 Economic analysis of afforestation projects for carbon sequestration	58
5.2.1 Impact of CER accounting methods	58
5.2.2 Scale of CDM forestry projects	60
5.2.3 Carbon sequestration costs	60
5.2.4 Sensitivity analysis	61
5.3 Final conclusions	62
6. REFERENCES	67
7. APPENDIX	71

List of tables

Table 1	Market shares of different mechanisms to meet Annex B Kyoto Protocol commitments	6
Table 2	Range and average of transaction cost components in a CDM project - values in €-	18
Table 3	Distribution of suitable forest soils by Province and quality.	25
Table 4	Silvicultural management plan of Ponderosa pine to produce sawmill-quality timber and clear products on average to high quality soils in Patagonia Andes Region.	28
Table 5	Volume per hectare and per plant (in brackets) of forest products obtained from Ponderosa pine afforestation in Patagonia.	29
Table 6	Biomass of different types of vegetation in forest suitable areas in Patagonia	31
Table 7	Summary of features and assumptions used in the current research.	40
Table 8	Amount of TCER and LCER generated in a ponderosa pine plantation with turnover of 35 years in sites of average to high quality soil.	43
Table 9	Economic indicators for a pine afforestation in Patagonia under different scenarios of decision maker and sources of income (600 ha project area, $i = 8\%$ and $8,2 \notin t$ CO ₂).	46
Table 10	Equivalencies between CER, TCER, and LCER prices at 8% discount rate.	49
Table 11	Sensitivity analysis for afforestation in Patagonia to changes in input and output prices.	54
Table 12	Strengths and weakness of the Patagonia forestry sector, and opportunities and threats of the CDM market.	63

List of figures

Figure 1	Supply and demand curves in the global carbon market under different scenarios.	8
Figure 2	Distribution of potential suppliers of sink and non-sink CDM projects	9
Figure 3	Main buyers and type of projects financed from 1996 to 2000	10
Figure 4	Comparison between abatement costs in €/t CO ₂ , carbon prices paid and carbon price forecasts	12
Figure 5	Examples of issuance: TCERs (a) and LCERs (b) on a curve of net anthropogenic GHG removal by sinks (carbon stock-curve discounted baseline and leakage). Beginning of the certification is year 10.	16
Figure 6	Maximum, minimum, and average transaction costs of CDM projects.	18
Figure 7	Distribution of capitalized expenditures and income in an afforestation project –turnover 35 years- in Patagonia	19
Figure 8	Conceptual framework of the research.	22
Figure 9	Map of the research area. Forest Region in Patagonia	23
Figure 10	Example of a graphic outcome using @RISK software.	27
Figure 11	Carbon sequestration in trunks, branches, needles and roots of Ponderosa pine plantation –35 years project- in Patagonia.	30
Figure 12	Land price for properties in the NW of Chubut according to the interviews.	37

Figure 13	Profitability distributions of Ponderosa pine afforestation based on timber product sales when different scenarios are considered with 8% discount rate.	42
Figure 14	Curve of carbon sequestration in a pine plantation and comparison of certified emission reductions generated with 'TCER' and 'LCER' approach.	43
Figure 15	Baseline determination costs and monitoring costs for different scale of projects estimated in Patagonia.	44
Figure 16	Present value of unitary transaction costs (\$/CER) utilising 'TCER' and 'LCER' approaches for different plantation project sizes (i = 8%, 8,2 \in /CER).	45
Figure 17	Comparison between three sources of income scenarios and four decision maker points of view for 600 ha pine plantation project (i = 8% and 8,2 \notin /t CO ₂).	47
Figure 18	Cash Flow of 'TCER' approach on 35 years afforestation project. Only transaction costs and revenues from carbon credit sales were taken into account (600 ha project).	48
Figure 19	Cash Flow of an afforestation project applying the 'LCER' approach. Only transaction costs and revenues from carbon credit sales were considered (600 ha project).	48
Figure 20	Maximum annual increment in carbon stocks in absence of the afforestation project according to 'TCER' and 'LCER' method at three CER prices.	49
Figure 21	Minimum project area using TCER and LCER approach for different CER prices (8% discount rate).	50

Figure 22	Present value of carbon sequestration per CER (a) and per hectare (b). And, present value of sequestering and emitting TCERs and LCER per hectare and per CER at different project sizes. (It includes land price, 8% discount rate, and 8,2 €/CER)	51
Figure 23	NPV (\$/ha) for the scenarios 'Investor without subsidies' (a) and 'Farmer without subsidies' (b) under different discount rates and source of income (size 600 ha and 8,2 €/CER).	53
Figure 24	Comparison of NPV using long term and temporary CER at different CER prices and decision maker scenarios (8% discount rate and project area 600 ha)	55
Figure 25	Temporary credits (left) and Long-term credits (right) at 8,2 €/CER, and 8% discount rate, with 200, 400, 600, 800 and 1000 ha afforestation project area.	56
Figure 26	Comparison between the profitability of 35 years and 40 years afforestation project in Patagonia (8,2 €/CER, 8% discount rate, and 600 ha).	56
Figure 27	Comparison between the cash flow considering timber sales, TCER sales and LCER sales (I+S scenario, scale = 300 ha, i = 8% and $8,2 \notin t$ CO ₂)	59
Figure 28	Example of the proposed financial scheme for project portfolios.	65

List of abbreviations

AAUs	Assigned Amount of Units
CDM	Clean Development Mechanism
CERs or CER	Certified Emission Reductions
CIEFAP	Patagonian Andes Forest Research and Extension Centre
CO ₂	Carbon dioxide
DGByP	Dirección General de Bosques y Parques
EAI	Expected Annual Income
ERs	Emission Reductions
ERUs	Emission Reduction Units
ET	Emission Trading
EU ETS	European Union Emission Trading Scheme
$\mathbf{F} - \mathbf{S}$	Farmer without state subsidies scenario
F + S	Farmer with state subsidies scenario
GHG	Greenhouse gases
GTZ	German Technical Cooperation
ha	Hectare
i	Discount rate
I - S	Investor without state subsidies scenario
I + S	Investor with state subsidies scenario
IETA	International Emission Trading Association
INTA	Instituto Nacional de Tecnología Agropecuaria
JI	Joint Implementation
КР	Kyoto Protocol
LCER	Long-term Certified Emission Reductions
LULUCF	Land Use, Land Use Change and Forestry
NPV	Net Present Value
OECD	Organisation for Economic Co-operation and Development
PCF	Prototype Carbon Fund
PV	Present Value
SAGPyA	Secretaria de Agricultura, Ganadería, Pesca y Alimentación
t CO ₂	Metric tonne of carbon dioxide
t/ha	Metric tonne per hectare
TCER	Temporary Certified Emission Reductions
UNFCCC	United Nations Framework Convention on Climate Change
\$	Argentinean Pesos