ÍNDICE DE CONTENIDOS

	Pá	gina
ÍNDIO	CE DE CONTENIDOS V	Ι
ÍNDIO	CE DE TABLAS IX	K
ÍNDIO	CE DE FIGURAS X	ζ
ÍNDIO	CE DE ESQUEMAS XII	I
Ι	RESUMEN	I
	SUMMARY XV	1
II	INTRODUCCIÓN1	
2.1.1	Proteínas de Adhesión Celular y su Rol en la Integración de Implantes de	
	Titanio1	
2.1.2	La secuencia RGD y su importancia1	
2.2.1	Los Implantes de Titanio y sus Características4	
2.2.2	Implantes de Titanio4	
2.2.3	Tipos de Implantes4	
2.2.4	Reactividad del TiO ₂ con moléculas de H ₂ O5	
2.3.1	Modelo Tipo Cluster y sus Características7	
2.3.2	Cluster de TiO ₂ 7	
2.3.3	Embedding en superficies metálicas	
2.4.1	Modelos de Cluster para Superficies de TiO ₂ Hidratadas9	
2.4.2	Superficie neutral hidroxilada10)
2.5.1	Reactividad del TiO ₂ con Moléculas del Medio Fisiológico como la	
	Fibronectina12	
III	HIPÓTESIS15	I
IV	OBJETIVOS	;)
4.1.1	Objetivos Generales16	j
4.2.2	Objetivos Específicos16	j
V	MATERIALES Y MÉTODOS17	,
5.1.1	Plan de trabajo17	r
5.2.1	Restricciones aplicadas a las optimizaciones geométricas	,

5.2.2	Optimización geométrica	
5.2.3	Visualización y modelado de estructuras19	
VI	PRESENTACIÓN Y ANÁLISIS DE RESULTADOS	
6.1.1	Optimización geométrica de la superficie de TiO ₂ hidroxilada20	
6.1.2	Efecto solvente	
6.2.1	Interacción del Acetato Sobre la Superficie Hidroxilada	
6.2.2	Optimización geométrica del Acetato	
6.2.3	Optimización geométrica del sistema compuesto por el Acetato y el cluster de	
	TiO ₂ (13x15 Å)	
6.2.4	Efecto solvente	
6.3.1	Interacción del Aspartato Sobre la Superficie Hidroxilada	
6.3.2	Optimización geométrica del Aspartato	
6.3.3	Optimización geométrica del sistema formado por Aspartato y TiO ₂ 31	
6.3.4	Efecto solvente	
6.4.1	Interacción de la Arginina Sobre la Superficie Hidroxilada	
6.4.2	Optimización geométrica de la Arginina37	
6.4.3	Optimización geométrica del sistema compuesto por Arginina y el cristal de	
	TiO ₂	
6.4.4	Efecto solvente	
6.5.1	Minimización de la Proteína Fibronectina y Extracción de las Coordenadas del RGI)
	para Interacción con la Superficie Hidroxilada	
6.5.2	Optimización del tripéptido RGD manteniendo los parámetros geométricos del	
	dato cristalográfico fijos44	
VII	CONCLUSIONES	
VIII	BIBLIOGRAFÍA	
IX	ANEXO	
Anexo	1: Secuencia RGD Altamente Conservada54	
Anexo	2: Espectroscopía Fotoelectrónica de Rayos X (XPS)55	
Anexo	3: Carta Gantt	
Anexo	4: Calores de Formación y Energía de Absorción58	
Anexo	5: Métodos Semiempíricos	

Anexo 6: Método Eigen Following	63
Anexo 7: Modelo de solvente COSMO	64
Anexo 8: Minimización Energética mediante Dinámica Molecular con el código	
NAMD	64
BIBLIOGRAFIA ANEXO	66

ÍNDICE DE TABLAS

Página

Tabla Nº 1:	Actividad de los péptidos sintéticos con mutaciones puntuales	.2
Tabla Nº 2:	Proteínas de adhesión que contienen el tripéptido RGD	.3
Tabla Nº 3:	Largos de enlace en una superficie de TiO ₂ neutral hidroxilada	.11
Tabla Nº 4:	Distancias de enlace para la superficie de TiO ₂ hidroxilada	.20
Tabla Nº 5:	Calores de formación para el cluster de TiO ₂ (13x15 Å)	.22
Tabla Nº 6:	Cargas parciales de los átomos de la región de interacción entre TiO_2 y	
	Acetato en vacío	.26
Tabla Nº 7:	Cargas parciales de los átomos de la región de interacción entre TiO_2 y	
	Acetato en solvente	.28
Tabla Nº 8:	Calores de formación para el cluster de TiO ₂ más Acetato	.28
Tabla Nº 9:	Energía de interacción del cluster de TiO2 más Acetato	.28
Tabla Nº 10:	Cargas parciales de los átomos de la región de interacción entre TiO_2 y	
	Aspartato en vació	.33
Tabla Nº 11:	Cargas parciales de los átomos de la región de interacción entre TiO_2 y	
	Aspartato en solvente	.36
Tabla Nº 12:	Calores de formación para el cluster de TiO ₂ más Aspartato	.36
Tabla Nº 13:	Energía de interacción del cluster de TiO2 más Aspartato	.36
Tabla Nº 14:	Calores de formación para el cluster de TiO ₂ más Arginina	.41
Tabla Nº 15:	Energía de interacción del cluster de TiO2 más Arginina	.42

ÍNDICE DE FIGURAS

Página

Figura Nº 1:	Gráficos inhibición de la adhesión celular2
Figura Nº 2:	Representación de un cluster de TiO ₂ estequiométrico
Figura Nº 3:	Representación de la absorción de H2O sobre un cluster de TiO2
	estequiométrico7
Figura Nº 4:	Modelo de un cluster
Figura Nº 5:	Celda unitaria para construir cristales de TiO ₂ 9
Figura Nº 6:	Cluster de TiO ₂ estequiométrico construido para este trabajo de Tesis10
Figura Nº 7:	Representación de una superficie de TiO2 hidratada construida para este trabajo
	de Tesis11
Figura Nº 8:	Posible interacción de la cadena lateral de aminoácidos ácidos y los hidrógenos
	de la superficie hidratada de TiO ₂ 13
Figura Nº 9:	Organización de los dominios de Fibronectina FNI, FNII y FNIII14
Figura Nº 10:	Representación de la geometría optimizada del cluster de TiO ₂
	hidroxilado de dimensiones 13x15 Å21
Figura Nº 11:	Ionización del Acetato en medio acuoso
Figura Nº 12:	Representación ampliada de la región de interacción entre Acetato y la
	superficie de TiO ₂ en vacío25
Figura Nº 13:	Representación de la estructura geométrica alcanzada después de la
	optimización del sistema compuesto por el Acetato y el cluster de TiO_2
	en solvente
Figura Nº 14:	Representación ampliada de la región de interacción entre Acetato y la
	superficie de TiO ₂ en solvente27
Figura Nº 15:	Representación del estado de transición correspondiente a la ionización
	de la cadena radical del aminoácido Aspártico
Figura Nº 16:	Representación ampliada de la región de interacción entre el Aspartato y
	la superficie de TiO ₂ en vació32
Figura Nº 17:	Representación de la geometría optimizada del sistema compuesto por
	Aspartato y TiO ₂ en presencia de solvente

Figura Nº 18:	Representación ampliada de la zona de interacción entre Aspartato y la	
	superficie de TiO ₂ en solvente	37
Figura Nº 19:	Representación del estado de transición entre la Arginina con carga neta	
	igual a 1 y la Arginina neutra	37
Figura Nº 20:	Representación ampliada de la región de interacción entre Arginina y	
	TiO ₂ en vacío	39
Figura Nº 21:	Representación de la geometría alcanzada después de la optimización	
	del sistema formado por Arginina y TiO ₂	40
Figura Nº 22:	Representación ampliada de la región de interacción entre Arginina y	
	TiO ₂	41
Figura Nº 23:	Representación del sistema construido para realizar la minimización de	
	energía	43

ÍNDICE DE ESQUEMAS

Esquema Nº 1:	Optimización geométrica del Acetato23
Esquema N° 2:	Optimización geométrica del sistema compuesto por el Cluster de TiO ₂
	y Acetato en vacío
Esquema N° 3:	Optimización geométrica del Aspartato
Esquema Nº 4:	Optimización geométrica del sistema compuesto por el Cluster de TiO ₂
	y Aspartato en vacío
Esquema N° 5:	Optimización geométrica de la Arginina
Esquema Nº 6:	Optimización geométrica del sistema compuesto por el Cluster de TiO ₂
	y Arginina en vacío
Esquema Nº 7:	Minimización energética de la proteína 1TTF44
Esquema Nº 8:	Refinamiento de la geometría del loop RGD mediante el método
	semiempírico PM645