ÍNDICE

1. INTRODUCCIÓN	1
1.1 Lugar de aplicación	1
1.2 El problema	1
1.3 Áreas de Investigación	4
1.4 Área de estudio e instituciones interesadas	5
1.5 Objetivo general	5
1.6 Objetivos específicos	5
2. MARCO TEÓRICO	6
2.1 Aspectos geológicos y geotécnicos de los materiales	6
2.1.1 Roca madre	6
2.1.2 Discontinuidad	6
2.1.3 Resistencia y deformabilidad del macizo rocoso	6
2.1.4 Suelo	. 12
2.1.5 Talud	. 12
2.2 Estabilidad de taludes	. 13
2.2.1 Factores que desencadenan fenómenos de inestabilidad .	. 14
2.2.2 Mecanismos de rotura en taludes mineros de rajo	. 14
2.2.3 Factor de seguridad (FS o FoS)	. 16
2.2.4 Métodos de cálculo estabilidad de taludes	. 17
2.2.5 Criterios de aceptabilidad	. 22
2.3 Tronaduras mineras y daño al macizo rocoso	. 24
2.3.1 Tronaduras mineras	. 24
2.3.2 Afección de las tronaduras al macizo rocoso	. 25
2.4 Análisis de estabilidad de taludes bajo efecto de tronaduras	. 28
2.4.1 Variación del Factor D, blast damage factor	. 28
2.4.2 Análisis dinámico	. 29
3. METODOLOGÍA	. 31
3.1 Recopilación de antecedentes bibliográficos y marco teórico	. 31
3.2 Instalación e instrucción respecto al uso de softwares	. 31
3.3 Propuesta de análisis	. 31
3.4 Definición de parámetros de entrada	. 31
3.5 Simulación y generación de resultados	. 32
3.5.1 Procedimiento de análisis numérico general RS2	. 32

3.5.2 Procedimiento de análisis dinámico en RS2	32
3.5.3 Procedimiento de análisis probabilístico en RS2	33
3.6 Orden y generación de estadística de los resultados	33
3.7 Presentación de resultados, análisis y conclusiones	33
3.8 Redacción del documento de memoria de título	34
4. DESARROLLO	35
4.1 Parámetros de entrada	35
4.1.1 Diseño del talud simplificado	35
4.1.2 Materiales	36
4.1.3 Modelo del rajo en <i>RS2</i>	37
4.1.4 Definición de la función de carga dinámica	38
4.1.5 Definición de etapas o fases	39
4.1.6 Parámetros análisis dinámico	40
4.1.7 Parámetros análisis probabilístico	40
4.2 Resultados y análisis	41
4.2.1 Validación modelo estático base	41
4.2.2 Validación magnitud onda de presión modelo dinámico	42
4.2.3 Análisis dinámico tronadura de operación en banco	43
4.2.4 Zonificación factor D por daño de tronadura	44
4.2.5 Análisis probabilístico de un talud minero post tronadura .	46
4.3 Discusión	48
5. CONCLUSIÓN	50
6. REFERENCIAS BIBLIOGRÁFICAS	52
7. ANEXOS	57
8. APÉNDICES	60

ÍNDICE DE FIGURAS

Figura 1.1: Colapso o falla de un talud en rajo minero en Bingham Canyon Mine, Utal
Figura 1.2: Representación esquemática de la transición entre la masa de roca in sit
y la roca tronada que es apta para manipulación
Figura 2.1: Envolvente lineal de Mohr-Coulomb
Figura 2.2: Izquierda, talud natural en Big Bend National Park, USA. Derecha, talu
artificial en Valencia, España 1
Figura 2.3: Esquema de taludes mineros con sus principales componentes 1
Figura 2.4: Ilustración simplificada de los mecanismos de falla más comunes 1
Figura 2.5: Factor de seguridad y probabilidad de falla de un talud 2
Figura 2.6: Probabilidad de falla versus número de simulaciones de Montecarlo 2
Figura 2.7.1: Muestreo de una distribución Normal por método Monte Carlo 2
Figura 2.7.2: Muestreo de una distribución Normal por método LHS 2
Figura 2.8: Izquierda, resultado de voladura sin control de daño. Derecha, resultado d
voladura con tronadura de contorno
Figura 2.9: Detonación y su efecto sobre el macizo
Figura 2.10: Detonación y su efecto sobre el macizo explicado mediante estado
tensionales
Figura 2.11: Extensión radial de las fracturas hacia la cara libre y desplazamiento de
macizo rocoso fracturado2
Figura 4.1 Diseño de talud de rajo en software AutoCAD 2023, escala métrica 3
Figura 4.2: Modelo de rajo discretizado y restringido en <i>RS2 v11</i>
Figura 4.3: Evolución temporal de la presión en las parades de un barreno. Fuente:3
Figura 4.4: Disposición de cargas distribuidas en modelo numérico
Figura 4.5: Ciclo de detonación por grupos de pozos, representado por presiones e
la dirección del eje X
Figura 4.6: Resultado de análisis de Frecuencias Naturales

Figura 4.7: Resultado de desplazamientos totales en modelo numérico estático
reproducción perfil S-9 Cerro Corona. SRF crítico modelo original: 1.46 4
Figura 4.8: Aceleración x producto de la secuencia de tronadura en punto de contro
cercano al banco de estudio4
Figura 4.9: Deformación cortante máxima (sólido) etapas finales del análisis dinámico
Figura 4.10: Sigma 1 (kPa) en zona de falla de la resultante del análisis dinámico
(izquierda) versus la replicada por la zonificación propuesta de daño (derecha) 4-
Figura 4.11: Diseño de zonificación propuesta (color verde) para la variación del <i>facto D/GS</i> I en un banco minero (color amarillo)
Figura 4.12: Resultados análisis de estabilidad LEM en talud de prueba basado en rajo Cerro Corona. Izquierda:
Figura 7.1: Perfil S-9 rajo Cerro Corona
Figura 7.2: Registro de aceleración de una detonación de tronadura minera de mediana envergadura
Figura 8.1: Esfuerzos principales de las zonas Silicificada y Silicificada D
Figura 8.3: Esfuerzos principales de las zonas Potásica C y Potásica C D
Figura 8.5: Esfuerzos principales de las zonas Potásica NC y Potásica NC D 6: Figura 8.6: Esfuerzo de corte versus esfuerzo normal de la zona Potásica NC Potásica NC D
Figura 8.7: Esfuerzos principales de las zonas Caliza C y Caliza C D
Figura 8.9: Esfuerzos principales de las zonas Caliza NC y Caliza NC D
Figura 8.11: Esfuerzos principales de la zona Argílica 2 NC

Figura 8.12: Esfuerzo de corte versus esfuerzo normal de la zona Argílica 2 NC 72
Figura 8.13: Resultado <i>máxima deformación de corte (sólido)</i> de análisis dinámico por
etapas74
Figura 8.14: Resultado <i>máxima aceleración x (dinámica</i>) de análisis dinámico por
etapas. Secuencia de tronadura en el banco de estudio
Figura 8.15: Medición de la <i>máxima deformación cortante</i> en un punto medio de la cara
lateral afectada por la tronadura de prueba76
Figura 8.16: Medición de la <i>máxima deformación cortante</i> en un punto medio de la
base o piso remanente afectado por la tronadura de prueba
Figura 8.17: Zonificación continua del factor D en basada en resultados de análisis
dinámico. Reducción de parámetros <i>factor D</i> y <i>GSI</i> según Tabla 8.3
Figura 8.18: Comparativa máxima deformación cortante momento post tronadura
(resultado análisis dinámico) versus replicación en base a zonificación de factor D/GSI
(resultado análisis estático)
Figura 8.19: Comparativa Sigma 1 (kPa) momento post tronadura (resultado análisis
dinámico) versus replicación en base a zonificación de factor D/GSI (resultado análisis
estático)
Figura 8.20: Comparativa desplazamientos horizontales (m) momento post tronadura
(resultado análisis dinámico) versus replicación en base a zonificación de factor D/GSI
(resultado análisis estático)79
Figura 8.21: Comparativa desplazamientos totales (m) momento post tronadura
(resultado análisis dinámico) versus replicación en base a zonificación de factor D/GSI
(resultado análisis estático)79
Figura 8.22: Resultados análisis de estabilidad probabilístico (izquierda) y
determinístico (derecha) en <i>Slide v9.023</i> por método de Spencer
Figura 8.23: Distribución FoS análisis probabilístico zonificación T de Hoek 81
Figura 8.24: Distribución FoS análisis probabilístico zonificación propuesta por el autor.
81

ÍNDICE DE TABLAS

Tabla 2.1: Cuadro básico del GSI	8
Tabla 2.2: Criterio de aceptación para factores de seguridad en rajos mineros	23
Tabla 2.3: Criterio de aceptación para probabilidad de falla en rajos mineros	23
Tabla 4.1: Listado de materiales empleados en la modelación numérica del talud…	36
Tabla 4.2: Preferencias de diseño para el modelo numérico en <i>RS2 v11.015</i>	37
Tabla 4.3: Etapas o fases de análisis dinámico de tronadura propuesta	40
Tabla 4.4: Valores <i>factor D y GSI</i> para cada zona ordenados desde el exterior hacia	a el
nterior del macizo rocoso	46
Tabla 4.5: Resumen comparativo resultados análisis determinístico vers	sus
orobabilístico	48
Tabla 7.1: Guía para estimar el factor de alteración D	57
Tabla 8.1: Listado de materiales y sus propiedades estándar o medias	60
Tabla 8.2: Parámetros variables análisis probabilístico	73
Tabla 8.3: Disminución de las propiedades de la Caliza C para la zonificac	ión
oropuesta	77