ÍNDICE

1. Resumen	4
2. Introducción	5
3. Marco teórico	7
3.1 Infecciones bacterianas	7
3.1.1 Staphylococcus y sus características morfológicas	7
3.1.2 Infecciones de piel y tejidos blandos causados por Staphylococcus	
aureus	8
3.1.3 Tratamientos actuales de infecciones cutáneas y tejidos blandos	10
3.2 Hidrogeles.	11
3.2.1 Generalidades de los hidrogeles	11
3.2.2 Características modificables de los hidrogeles	15
3.2.3 Usos actuales de hidrogeles.	16
3.3 Actividad antibacteriana de metales y nanopartículas de plata	18
3.3.1 Generalidades de la actividad antibacteriana de metales	18
3.3.2 Nanopartículas de plata	19
3.3.3 Propiedades fisicoquímicas de nanopartículas de plata	24
3.3.3.1 Tamaño	24
3.3.3.2 Forma	24
3.3.3 Superficie	25
3.3.4 Mecanismos antibacterianos de nanopartículas de plata	25
3.3.4.1 Alteración de paredes celulares	25
3.3.4.2 Generación de especies reactivas de oxígeno (ROS)	26
3.3.4.3 Inducción de efectos antibacterianos intracelulares	26
4. Hipótesis	28
5. Objetivos generales y específicos	28
6. Metodología	29
6.1 Materiales	29
6.2 Métodos.	29
6.2.1 Síntesis de hidrogeles	29

6.2.2 Síntesis de nanohíbridos de hidrogel con nanopartículas de plata	30
6.2.3 Estudios de hinchazón.	31
6.2.4 Espectroscopía infrarroja.	31
6.2.5 Análisis de microscopía electrónica de barrido (SEM)	32
6.2.6 Análisis de microscopía electrónica de transmisión (TEM)	32
6.2.7 Determinación de la actividad antibacteriana de los nanohíbridos	
sintetizados contra Staphylococcus aureus mediante difusión en agar	32
6.2.8 Ensayo cuantitativo de la actividad antimicrobiana de los nanohíbridos	
sintetizados contra Staphylococcus aureus	33
7. Resultados	34
7.1 Síntesis de hidrogeles	34
7.2 Síntesis de nanohíbridos de hidrogel con nanopartículas de plata	34
7.3 Estudios de hinchazón	35
7.4 Espectroscopía infrarroja	36
7.5 Análisis de microscopía electrónica de barrido (SEM)	36
7.6 Análisis de microscopía electrónica de transmisión (TEM)	37
7.7 Determinación de la actividad antibacteriana de los nanohíbridos	
sintetizados contra Staphylococcus aureus mediante difusión en agar	39
7.8 Ensayo cuantitativo de la actividad antimicrobiana de los nanohíbridos	
sintetizados contra Staphylococcus aureus	40
8. Discusión	41
8.1 Síntesis del hidrogel de polivinilalcohol con ácido maleico	41
8.2 Síntesis de nanohíbridos basados en hidrogel y nanopartículas de plata	42
8.3 Estudio de hinchazón de hidrogeles	43
8.4 Espectroscopía infrarroja.	44
8.5 Microscopía electrónica de barrido (SEM) y Microscopía electrónica de	
transmisión (TEM)	44
8.6 Determinación de la actividad antibacteriana de los nanohíbridos	
sintetizados frente a Staphylococcus aureus	46
9. Conclusiones	48
10 Referencias hibliográficas	<u>1</u> C

ÍNDICE DE TABLAS Y FIGURAS

Figura 1. El tamaño de la malla de hidrogel media la difusión de fármacos	14
Figura 2. Cinco enfoques principales utilizados para obtener conjugados hidrogel-	
nanopartículas con distribución uniforme	21
Figura 3. Múltiples mecanismos de acción antimicrobiana de nanopartículas	27
Figura 4. Comparativa discos hidrogel PVA-AML en ausencia y presencia de	
nanopartículas de plata	34
Figura 5. Ensayo de índice de hinchazón.	35
Figura 6. Espectro típico de espectroscopía infrarroja del hidrogel de	
polivinilalcohol con agente entrecruzante ácido maleico	36
Figura 7. Imágenes de microscopía electrónica de barrido	37
Figura 8. Imágenes de microscopía electrónica de transmisión	38
Figura 9. Imagen de halos de inhibición de Hidrogeles PVA-AML con	
nanopartículas de plata	39
Tabla 1. Medidas y promedio de halos de inhibición de Hidrogeles PVA-AML con	
nanopartículas de plata	39
Tabla 2. Ensayo cuantitativo de actividad antibacteriana contra Staphylococcus	
aureus	40

1. RESUMEN

El avance de los sistemas de administración es un tema esencial cuando se habla de

infecciones bacterianas, generando actualmente una búsqueda para crear nuevos formatos

mediante los cuales se pueda generar una mayor eficiencia al momento de la erradicación de

los microorganismos. En este ámbito los hidrogeles, siendo redes poliméricas hidrofílicas

con capacidad de absorción y liberación de moléculas, han sido estudiados como una forma

plausible de generar una administración localizada y sostenida en el tiempo, pero aun con un

sistema de administración adecuado debido al mal uso antibiótico, puede que algunas cepas

bacterianas no sean sensibles a fármacos de elección, por lo cual se ha trabajado con

diferentes materiales antimicrobianos, como lo son las nanopartículas de plata, las cuales

presentan efectividad en la eliminación de bacterias al utilizar mecanismos de erradicación

múltiples y simultáneos.

Al comprender y combinar estos factores se pudo generar nanohíbridos de hidrogel con

nanopartículas de plata, ocupando este polímero como soporte para la síntesis de las

nanoestructuras. Esto permitió modificar el diámetro de las nanopartículas de forma

dependiente a las concentraciones del agente reticulador, logrando determinar que, en base a

la matriz porosa de los hidrogeles, las nanopartículas de plata pueden ser modificables en

tamaño además de que estos polímeros formados en base a polivinilalcohol (PVA) y

diferentes proporciones de ácido maleico (AML) son viables para la síntesis de estas

estructuras nanométricas. También, al analizar los ensayos de actividad antibacteriana en

placa y de forma cuantitativa se demostró que estos nanohíbridos presentan una actividad

efectiva frente a cepas de Staphylococcus aureus ATCC® 25923 provocando un efecto

antibacteriano inversamente proporcional al tamaño de las nanopartículas formadas.

Palabras claves: Hidrogel, nanopartículas, plata, Staphylococcus, antibacteriano.

4