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Doctorado presentada por el candidato:

Abraham Solar

ha sido aprobada por la Comisión de Evaluación de la tesis como requisito para optar al grado de
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CHAPTER I

Introduction

In this work, we study the asymptotic convergence of solution u(t, x) of the initial

value problem for a monostable reaction-di↵usion equation with delayed reaction

u
t

(t, x) = u
xx

(t, x)� u(t, x) + g(u(t� h, x)),(1.1)

u(s, x) = w0(s, x), (s, x) 2 ⇧0 := [�h, 0]⇥ R.(1.2)

In the sequel, it is always assumed that the continuous function w0(s, x) is locally

Hölder continuous in x 2 R, uniformly with respect to s, and that the function

g : R+ ! R+ satisfies the monostability condition

(H) the equation g(x) = x has exactly two nonnegative solutions: 0 and  > 0.

Moreover, g is C1-smooth in some �0-neighborhood of the equilibria where g0(0) > 1,

g0() < 1, and also satisfies the Lipschitz condition |g(u)� g(v)|  L
g

|u� v|, u, v 2

[0,]. In addition, there are C > 0, ✓ 2 (0, 1], such that |g0(u)� g0(0)| + |g0() �

g0( � u)|  Cu✓ for u 2 (0, �0]. Without restricting generality, we will also assume

that g is linearly and C1-smoothly extended on (�1, 0].

Equation (1.1) (together with its non-local versions) is an important model in the

population dynamics [8, 9, 19, 21, 25, 27, 28, 37, 39, 58, 61, 62] where it is used

to describe the spatio-temporal evolution of a single-species population. In this
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interpretation of (1.1), g is a birthrate function, u(t, x) denotes the population density

at location x and time t, and it is supposed that the species reaches sexual maturity

at age h > 0. Clearly, the Cauchy problem (1.1), (1.2) can be solved by the method of

steps [17], where in the first step we have to look for the solution of the inhomogeneous

linear equation

u
t

(t, x) = u
xx

(t, x)� u(t, x) + g(w0(t� h, x)), t 2 [0, h], x 2 R,

satisfying the initial condition u(0, x) = w0(0, x). Besides the hypothesis (H), from

a biological point of view, it is realistic to assume that the birth function g is either

strictly increasing or unimodal (i.e. g has exactly one critical point which is the

absolute maximum point [25, 54, 61]) function on R+. In the population dynamics,

equation (1.1) improves certain weaknesses (cf. [22] or [56, pp. 56-58]) of the logistic

growth model given by the KPP-Fisher delayed or nonlocal equations [4, 6, 10, 13,

20, 24]. One of the most interesting features of the dynamics in (1.1) is the existence

of smooth positive solutions u(t, x) = �(x + ct) satisfying the boundary conditions

�(�1) = 0 and lim inf
t!+1 �(t) > 0 (for c > 0, cf. [19]). Such solutions are called

traveling semi-wavefronts (or wavefronts if additionally �(+1) = ), they describe

waves of colonisation propagating with the velocity c. The convergence and stability

properties of wavefronts to (1.1) are quite well understood in the non-delayed case

(i.e. when h = 0). The studies of the front stability in non-delayed monostable

equation (1.1) were initiated in 1976 by Sattinger [48] (see [41] for the state-of-art

on this topic), but already the seminal work of Kolmogorov, Petrovskii, Piskunov

(1937) presented a first deep analysis of the convergence of the solution u(t, x) of

(1.1), (1.2) (with �u + g(u) = u(1 � u) and with w0(s, x) being the Heaviside step

function H(x)) to a monotone wavefront.

Now, the investigation of asymptotic behavior of solution to problem (1.1), (1.2)
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becomes a much more challenging task when h > 0. For instance, the recent works

[10, 11, 19, 20, 24, 28, 54] show that the delay h has a strong influence on the geometry

of front’s profile � and complicates enormously the studies of the front uniqueness

[1, 8, 55, 58] and stability [8, 25, 27, 28, 29, 37, 39, 41, 58]. Moreover, in order to be

able to perform the local stability analysis of equation (1.1), it was always necessary

to assume the additional sub-tangency restriction

(1.3) g(u)  g0(0)u, u � 0.

Under this assumption, all wavefronts of equation (1.1) are known as ‘pulled’ fronts

(see [6, 18, 44, 45, 46, 52, 60] for further details), model (1.1) is linearly determined

[23, 59] and there exists a positive number c⇤ > 0 (called the minimal speed of

propagation) separating the positive axis on the set of admissible semi-wavefronts

speeds [c⇤,+1) and the set [0, c⇤) of velocities c for which does not exist any non-

constant positive bounded wave solution u(t, x) = �(x + ct) [19]. Furthermore, the

minimal speed c⇤ is determined from the characteristic equation

�(z, c) := z2 � cz � 1 + g0(0)e�zch = 0(1.4)

as the unique real value c# for which �(z, c) has a positive double zero �1(c#) =

�2(c#) (i.e. c⇤ is equal to c# if (1.3) holds). Note that for c > c# equation �(z, c) = 0

has exactly two positive simple roots, we will denote them as �1(c) < �2(c).

In this way, as far as we know, all studies of wave’s stability in the delayed model

(1.1) have dealt exclusively with the stability of pulled wavefronts. Nevertheless,

from an ecological point of view, models with the birth functions which are not

sub-tangential at u = 0 are also quite interesting in view of the interpretation of

non-sub-tangentiality property of g in terms of a weak Allee e↵ect [6, 16, 44]. In the

non-delayed case, it is well known [18, 44, 45, 46, 52, 60] that such systems can possess
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a special type of minimal wavefronts called the ‘pushed’ fronts. As the characterising

property of a pushed wave for model (1.1), we can take the following one: the minimal

wavefront u(t, x) = �(x+ c⇤t) is pushed if the velocity c⇤ is not linearly determined,

i.e. if c⇤ > c#. The recent work [44] explains why, contrarily to the pulled waves, the

pushed colonisation waves can be considered as waves promoting genetic diversity in

the ecological systems.

Respect to the selection problem,the concept of ‘speed selection’ reflects the ev-

ident fact that the properties of w0 may determine the speed of propagation of the

initial ‘concentration’ (of something) w0(s, x) from the right side of the x-axis R

(where w0 is separated from 0) to the left side of R (where w0 vanishes). Moreover,

in the non-delayed case (when h = 0) it is well known [46] that, given a converging

solution u(t, x, w0) �
w0(x+ ct), the speed of propagation c ‘choosen’ by u(t, x, w0)

depends mainly only on the asymptotic behavior of w0(s, x) at x = �1. It is clear

also that the speed selection problem is closely related to the front stability question:

indeed, if some wavefront u = �(x + c0t) is stable (in an appropriate metric phase

space), then each initial datum w0(s, x) close to �(x + c0s) yields a ‘concentration’

distribution u(t, x) propagating to the left of R with the same velocity c0. Below we

will give precise mathematical formulations for the above informal discussion. So, we

can to show that there exist a critical value �⇤ > 0 so that if the behavior in x ! �1

of the initial date w0(s, x) is as Ae��x( for some A > 0 and uniformly in s 2 [�h, 0])

with � < �⇤, then the solution generated by w0, u(t, x), converges uniformly on R to

some wavefront �(x+ ct), with some c > c⇤ to specific, which has the same behavior

than w0 in x ! �1. While that for � > �⇤ if the behavior for x ! �1 of the

initial date is as A(x)e�x( for some non negative and bounded function A(x) and

uniformly in s 2 [�h, 0]) with � > �⇤ then the solution u(t, x) converges uniformly
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on R to a minimal wavefronts �(x + c⇤t) which have not the same behavior than

w0 necessarily. To precise this ideas we divide the text in two part to analyze these

two cases in more detail and in there we dedicated more comments respect to the

problems of stability and selection.

In the first part, we study the stability of minimal wave front in pushed case. The

study of pushed waves in the monostable delayed model (1.1) was initiated in [27, 55]

(curiously, in the first work [49] dealing with traveling waves in delayed models, all

waves were tacitly presumed to be pulled). In [55], after assuming monotonicity of g,

it was proved that the unique minimal wavefront propagating with the speed c⇤ > c#

must have a strictly increasing profile � with the following asymptotic representation

at �1:

(1.5) �(t+ s0) = e�2t +O(e(�2+&)t), �2 := �2(c⇤), & > 0, t ! �1.

It should be noted that the situation when non-monotone (for example, unimodal)

birth function g : [0,] ! R+ does not satisfy (1.3) is not completely understood

till now. In fact, even the existence of the minimal speed of propagation c⇤, as the

lowest value from a closed connected unbounded set of all admissible wavefront (or

semi-wavefront [4, 19]) velocities, is not yet proved for the case of non-monotone and

not sub-tangential g. From the formal point of view, the existence of the pushed

fronts to the delayed model (1.1) neither was established in [55]. In any case, this

point can be easily completed:

Proposition 1. Assume that u = �(x + c⇤t), c⇤ > c#(h0), is a pushed traveling

front to the monotone model (1.1) considered with some fixed h0 � 0. Then there

exists a positive � such that equation (1.1) possesses a pushed traveling front for each

non-negative h 2 (h0 � �, h0 + �). In particular, there exists a delayed equation (1.1)
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with h > 0 possessing the minimal monotone wavefront u = �(x+c⇤t) with the profile

� satisfying the asymptotic formula (1.5).

Proof. Since c#(h) depends continuously on h � 0, the first part of Proposition 1 will

be proved if we establish the lower semicontinuity of c⇤(h) at h0. Then the existence

of pushed wavefronts to the equation (1.1) considered with small positive delays

follows from the existence of the pushed wavefronts to the Fisher type population

genetic model [23, Theorem 11] u
t

(t, x) = u
xx

(t, x)�u(t, x)+ (10u(t, x)+3u2(t, x)�

5u3(t, x))/8. Hence, it su�ces to prove the following

Claim. Suppose that h
j

! h0, c⇤(hj

) ! c0 as j ! +1. Then c0 � c⇤(h0).

Indeed, take some c > c0. Then, for all su�ciently large j, the equation

u
t

(t, x) = u
xx

(t, x)� u(t, x) + g(u(t� h
j

, x))

has a unique (up to translation) positive strictly monotone wavefront u(t, x) = �
j

(x+

ct). Without the loss of the generality, we can assume that �
j

(0) = /2. It is easy

to see (cf. [55]) that each profile �
j

satisfies the integral equation

(1.6) �(t) =
1

⇠2 � ⇠1

✓Z
t

�1
e⇠1(t�s)g(�(s� ch

j

))ds+

Z +1

t

e⇠2(t�s)g(�(s� ch
j

))ds

◆
,

where ⇠1 < 0 < ⇠2 are roots of the equation z2�cz�1 = 0. Since |�0
j

(t)|  /
p
c2 + 4,

|�
j

(t)|  , the sequence �
j

has a subsequence �
jk

wich converges, uniformly on

compact subsets of R, to the monotone continuous bounded function �0(t), �0(0) =

/2. By the Lebesgues dominated convergence theorem, �0 satisfies the equation

(1.6) with h0 and therefore �0 is a positive profile of strictly monotone wavefront

propagating with the velocity c [19, 55]. In this way, c � c⇤(h0) for every c > c0 that

yields c0 � c⇤(h0).
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Formula (1.5) implies that pushed profiles �(s) converges to 0 at �1 more rapidly

than the profiles of other (i.e. non-minimal or pulled) waves behaving as

�(t+ s0) = (�t)me�1t +O(e(�1+&)t), �1 := �1(c), & > 0, m 2 {0, 1}, t ! �1.

The fast asymptotic decay of pushed fronts at �1 makes them similar to the so-

called bistable fronts [14, 50, 60]. Actually, by analysing the inside dynamics of

wavefronts, Garnier et al [18] (in the non-delayed case) and Bonnefon et al [6] (in

the delayed case) have recently proposed a general definition of pushed waves which

allows to consider the monostable pushed fronts and the bistable fronts within a

unified framework. An additional argument if favor of this insight is provided by the

theory of nonlinear stability of waves. Indeed, both monostable pushed fronts and

bistable fronts are proved to have rather good stability properties [14, 42, 45, 50, 52,

53]. Furthermore, the most complete and comprehensible proof of the asymptotic

stability of monostable pushed front given in [45] uses constructions and results

obtained for a bistable model in [14].

Hence, the main aim of this part is to study the stability properties of monostable

pushed fronts to the monotone delayed model (1.1). We are going to achieve this

goal by developing several ideas and methods from [14, 42, 45, 55]. We also will

establish the asymptotic convergence of solutions for the initial value problem (1.1),

(1.2) to an appropriate pushed wavefront when, in addition to (H), g is monotone

and when w0 satisfies, for some A,B > 0, � 2 (0,) and µ > �1(c⇤) the following

conditions (IC):

(IC1) 0  w0(s, x)  , (s, x) 2 ⇧0

(IC2) w0(s, x)  Aeµx, (s, x) 2 ⇧0;

(IC3) w0(s, x) > � �, s 2 [�h, 0], x � B.
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Alternately, we consider the similar but weaker conditions (IC’) :

(IC10) 0  w0(s, x)  |w0|1 := sup(s,x)2⇧0
< 1, (s, x) 2 ⇧0

(IC20) lim inf
x!1 min

s2[�h,0] w0(s, x) > 0.

From the monotonicity of g and the hypotheses (H), (IC), by invoking the well-

known existence and uniqueness results and the comparison principle [15, Chapter

1, Theorems 12, 16], we can deduce the existence of a unique classical solution

u = u(t, x) : [�h,+1) ⇥ R ! [0,] to (1.1), (1.2) (i.e. of a continuous bounded

function u having continuous derivatives u
t

, u
x

, u
xx

in ⌦ = (0,+1)⇥R and satisfying

(1.1) in ⌦ as well as (1.2) in ⇧0). As the following proposition shows, the asymptotic

behavior of this solution u(t, x) on bounded subsets of R is quite simple:

Proposition 2. Suppose that the initial datum w0 6⌘ 0 satisfies (IC1) and that the

Lipshitz continuous map g : [0,] ! [0,] has exactly two fixed points: 0 and  > 0.

Then lim
t!1 u(t, x) =  uniformly on compact subsets of R.

At first glance, if additionally we assume the monotonicity of g, Proposition 2

seems to follow from quite general results on spreading speeds to continuous-time

semiflows established in [26, 27]. Indeed, [27, Theorem 34] shows that even rather

weak positivity condition assumed in Proposition 2 is enough to assure stronger

convergence

(1.7) lim
t!1

sup
x2[�c

0
t,c

0
t]
|u(t, x)� | = 0, c0 2 (0, c⇤),

once g is a subhomogeneous function: ⇢g(x)  g(⇢x) for all ⇢ 2 [0, 1] and x � 0. It

is easy to see, however, that the latter condition implies the sub-tangency inequality

(1.3).

Our proof of Proposition 2 follows closely the main lines of [2], where Aronson

and Weinberger established a similar result for non-delayed equations. See also [62,



9

Theorem 3.2] for an analogous assertion proved for a non-di↵usive delay di↵erential

equation with spatial non-locality in an unbounded domain. In general (e.g. under

condition (IC2)) the convergence of u(t, ·) ! , t ! +1, is not uniform on R: this

is an immediate outcome of our subsequent investigation of the asymptotic behavior

of the entire solution u(t, x) as t ! +1 on the whole real x-line R.

In order to state the main results of this part, we take a pushed front �(x + c⇤t)

for equation (1.1) and fix a positive number � < µ such that � 2 (�1(c⇤),�2(c⇤)).

We will also consider the Banach space

C
�

(R) =
⇢
y 2 C(R,R) : |y|

�

:= max{sup
x0

e��x|y(x)|, sup
x�0

|y(x)|} < 1
�
.

This norm will use along the text still in the case when � 2 (�1(c),�2(c)) where

c > c⇤.

Observe that |y|
�

= sup
x2R |y(x)|/⌘(x), where ⌘(x) := min{e�x, 1}. Our first

theorem shows that the pushed front �(x+ c⇤t), c⇤ > c#, is nonlinearly stable with

asymptotic phase [47]:

Theorem I.1. Let g be monotone and conditions (IC), (H) be satisfied. Then for

every ✏ > 0 there exists � > 0 such that |�(·+c⇤s)�w0(s, ·)|� < �, s 2 [�h, 0], implies

that |�(·+ c⇤t)�u(t, ·)|
�

< ✏ for all t � 0. Here u(t, x) is solution of the initial value

problem (1.1), (1.2). Furthermore, there exists s0 such that |�(·+c⇤t+s0)�u(t, ·)|
�

!

0 as t ! +1.

The stability result of Theorem I.1 follows from Corollary 13 proved in Section 2

while the asymptotic convergence u(t, x) ! �(x + c⇤t + s0), t ! +1, follows from

the next theorem. It describes the global stability properties of the pushed fronts

with respect to initial data satisfying the hypothesis (IC):
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Theorem I.2. Let g be monotone and conditions (IC), (H) be satisfied. Then the

solution u(t, x) of the initial value problem (1.1), (1.2) asymptotically converges to

a shifted front. In fact, for some s0 2 R,

(1.8) lim
t!1

sup
x2R

|u(t, x)� �(x+ c⇤t+ s0)|/⌘(x+ c⇤t) = 0.

It is instructive to compare Theorems I.1, I.2 with stability results obtained for

non-critical pulled fronts in the delayed model (1.1) with monotone reaction g sat-

isfying (1.3) and (H). For example, taking initial functions w0 satisfying (IC1) and

assuming that the initial disturbance �(· + cs) � w0(s, ·) belongs to the weighted

Sobolev space H1
⌘

2(R) and depends continuously on s 2 [�h, 0], Mei et al [37, Theo-

rem 2.2] proved that |�(· + ct) � u(t, ·)|0 ! 0 exponentially when t ! +1. Hence,

in view of the continuous imbedding H1
⌘

2(R) ⇢ C
�

(R) \ C0,1/2(R+), initial func-

tions w0(s, x) in [37] are uniformly Hölder continuous in x and converge at +1,

w0(s,+1) =  (in fact, this convergence is uniform in s 2 [�h, 0], so that each w0

meets trivially the restriction (IC3)). They should also satisfy, for some C > 0 the

inequality

(1.9) |�(x+ cs)� w0(s, x)|  Ce�x, (s, x) 2 ⇧0, � 2 (�1,�2).

Due to the asymptotic representation (1.5) and to certain freedom in the choice

of �, µ, in the case of pushed fronts, the latter condition amounts precisely to the

hypothesis (IC2). Nevertheless, in contrast to inequality (1.9) considered with a

pushed front u = �(x + c⇤s), the same inequality considered with a pulled front

u = �(x + cs) is not satisfied if we take the Heaviside step function H(x) as the

initial function w0(s, x) = H(x). Thus the question about the asymptotic form of

solution u(t, x) to the Cauchy problem (1.1), (1.2) with w0(s, x) = H(x) and with
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the sub-tangential g still remains unanswered in the delayed case. It is worth to

recall that precisely this question formulated for a non-delayed monostable equation

(1.1) was the main object of studies in the seminal work by Kolmogorov, Petrovskii,

Piskunov in 1937.

Now, it is worth noticing that equation (1.1) is invariant wit respect to the trans-

formation x ! �x so that the statements of Theorems I.1 and I.2 can be easily

adapted to the case when the initial function w0(s,�x) meets the hypothesis (IC).

Evidently, in such a case, we should use pushed backs of the form u = �(�x + c⇤t)

instead of the pushed wavefronts. Then the natural question is whether solution

u(t, x) converges to a combination of a pushed front and a pushed back when the

both non-zero functions w0(s, x), w0(s,�x) satisfy conditions (IC1), (IC2). In par-

ticular, this happens when w0 has compact support. To the best of our knowledge,

the studies of the asymptotic form of solutions to the monostable reaction-di↵usion

equations having compactly supported initial data were initiated in [2, 45, 53, 57].

Here, we analyse a similar problem in the presence of delay; hence, our third theorem

considers the initial data for (1.1), (1.2) exponentially vanishing at both infinities.

Theorem I.3. Assume that u = �(x + c⇤t), c⇤ > c#, is a pushed traveling front

to equation (1.1). If non-zero functions w0(s, x), w0(s,�x) satisfy conditions (IC1),

(IC2) then the solution u = u(t, x) of the initial value problem (1.1), (1.2) asymp-

totically converges to a combination of two shifted fronts, i.e. for some s1, s2 2 R,

lim
t!1

sup
x0

|u(t, x)� �(x+ c⇤t+ s1)|/⌘(x+ c⇤t) = 0,

lim
t!1

sup
x�0

|u(t, x)� �(�x+ c⇤t+ s2)|/⌘(�x+ c⇤t) = 0.

Clearly, Theorem I.3 combined with the comparison principle shows that relation

(1.11) holds for each solution u = u(t, x) to (1.1) once associated initial datum
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w0(s, x) 6⌘ 0 satisfies (IC1). Moreover, since Theorem I.3 implies that

lim
t!1

sup
x 62(�c

0
t,c

0
t)
u(t, x) = 0, c0 > c⇤,

we can conclude that the speed c⇤ of pushed waves coincides with the spreading speed

for model (1.1). Without restriction (1.3), this important result was for the first time

established in [26, 27] (in a much more general setting). Therefore Theorem I.3 can

be also viewed as an essential improvement of the mentioned Liang and Zhao result

for the particular case of Eq. (1.1).

As in [14, 45], the method of sub- and super-solutions is a key tool for proving our

main results. The sub- and super-solutions will be obtained as suitable deformations

(invented by Fife and McLeod in [14] for the bistable systems and adapted by Rothe

in [45] for the monostable equations) of the pushed wavefront. The other important

idea exploited in [14, 45] is the use of an appropriate Lyapunov functional for proving

the wave stability. However, the construction of such a functional seems to be a rather

di�cult task in the case of the functional di↵erential equation (1.1). Thus, instead of

this, we decided to use the Berestycki and Nirenberg method of the sliding solutions

[5, 55] as well as some ideas of the approach developed by Ogiwara and Matano in

[42]. It is natural to expect that the rate of convergence in (1.8) is exponential, see

e.g. [14, 37, 39, 45, 47]. The demonstration of this fact, however, is based on a

di↵erent approach and will be considered in a separate work.

In the second part we continue our study about stability, but we consider the super

critical fronts (c > c#). Also, in this part, we can to solve the selection problem.

The main di↵erence with the previous works consists in generally non-convex and

non-smooth nature of the monotone birth function g: in fact, we do not even require

the subtangency condition

g(x)  g0(0)x, x � 0.
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Before announcing our principal theorem, we recall [55] that the condition c � c⇤

implies that the characteristic equation at the trivial steady state

�0(�) := �2 � c�� 1 + g0(0)e��ch = 0

has exactly two real roots �1 = �1(c)  �2 = �2(c) (counting multiplicity), both of

them are positive. Note also that ��1(c),�2(c) are increasing functions of c.

The main result of this part is the following

Theorem I.4. Assume that the initial function w0 satisfies the hypotheses (IC10),

(IC20) and that, for some A > 0 and c > c⇤, it holds

lim
x!�1

w0(s, x)e
��1(c)(x+cs) = A

uniformly on s 2 [�h, 0]. If, in addition, the birth function g satisfies (H), then

(1.10) lim
t!1

sup
x2R

|�(x+ ct+ a)� u(t, x)|
⌘
�1(x+ ct)

= 0,

where a = (�1(c))�1 lnA and the front profile � (existing in virtue of the assumption

c > c⇤) is normalised by lim
x!�1 e��1(c)x�(x) = 1.

Theorem I.4 allows to answer the velocity selection question for solutions with

initial data possessing exponential decay at �1. Indeed, suppose that, for some

� > 0, it holds

(1.11) lim
x!�1

w0(s, x)e
��x = A(s) > 0, uniformly in s 2 [�h, 0].

Then define c(�) by the formula c(�) = µ/�, where µ is the unique positive root of

the equation

�2 � µ� 1 + g0(0)e�µh = 0.

It is easy to see that c(�) � c#, where c# = c#(g0(0), h) is the so-called critical speed

(a uniquely determined value of c for which the characteristic function �0(�) has a
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double positive zero). Set �⇤ := �1(c⇤). We claim that

c
�

:=

8
><

>:

c(�), if � < �⇤,

c⇤, if � � �⇤,

is the speed of propagation selected by solutions with initial data satisfying (1.11).

More precisely, the following assertion holds.

Corollary 1. Assume that the initial function w0 satisfies the hypotheses (IC10),

(IC20) and (1.11). Suppose first that � > �⇤ and c⇤ > c#, then

lim
t!+1

sup
x2R

|�⇤(x+ c⇤t)� u(t, x)|
⌘
⌫

(x+ c⇤t)
= 0

for each fixed ⌫ 2 (�⇤,�). Here �⇤ denotes the profile of appropriately shifted unique

minimal (pushed) front to equation (1.1).

Next, let � < �⇤ (so that c(�) = c
�

) and c⇤ � c#. Set

a� :=
1

�
ln


min

s2[�h,0]
A(s)e�µs

�
 a+ :=

1

�
ln


max

s2[�h,0]
A(s)e�µs

�
.

Then for every ✏ > 0 there exists T1(✏) > 0 such that

(1� ✏)�
�

(x+ c
�

t+ a�)  u(t, x)  (1 + ✏)�
�

(x+ c
�

t+ a+), t � T1(✏), x 2 R.

Here �
�

denotes the profile of the unique wavefront to equation (1.1) propagating

with the velocity c(�) and satisfying lim
x!�1 e��x�

�

(x) = 1.

Now, if � = �⇤ and c⇤ > c#, then for every ✏ > 0 and positive ⌫ < �⇤ there are

T2(✏) > 0 and a0 2 R such that

(1.12) (1� ✏)�⇤(x+ c⇤t+ a0)  u(t, x)  (1 + ✏)�
⌫

(x+ c
⌫

t), t � T2(✏), x 2 R.

Furthermore, in such a case, u(t, x) can not converge (al least, uniformly on R) to a

wavefront solution of equation (1.1).
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Finally, if L
g

= g0(0) (so that c⇤ = c#) and � � �⇤, then for every ✏ > 0 there are

T3(✏) > 0 and b0 2 R such that

(1.13) 0  u(t, x)  (1 + ✏)�⇤(x+ c⇤t+ b0), t � T3(✏), x 2 R.

It is worth to note that there is an important di↵erence between the speed selection

results obtained in the non-delayed and delayed cases. Indeed, if h = 0 and � < �⇤

then a� = a+ and therefore u(t, x) converges to a single wavefront �
�

(x+ c
�

t+ a±)

propagating with the velocity c
�

= �+(g0(0)�1)/�. In the delayed case, however, we

only can say that u(t, x) evolves between two shifted traveling fronts, both of them

moving with the same velocity c
�

. Observe also that, since µ = µ(h) is a decreasing

function of h, the inclusion of delay in problems modeled by (1.1) slows down the

propagation of ‘concentrations’ having the same initial distribution which satisfies

(1.11).

Remark 1. Consider again the final statement of Corollary 1. Under conditions

assumed in it (at least when additionally � > �⇤), it is natural to expect [46] the

so-called convergence in form of u(t, x) to the minimal wavefront: that is

sup
x2R

|u(t, x)� �⇤(x+  (t))| ! 0, as t ! +1,

for an appropriate function  (t). Then (1.13) implies that the function  (t)� c⇤t is

bounded from above: in other words, in such a case, the concentration u(t, x) should

propagate behind the minimal front. A more detailed analysis of this phenomenon

for some delayed reaction-difusion models will be given in the forthcoming work by

the authors.

Another immediate consequence of Theorem I.4 is the following assertion con-

cerning the global asymptotic stability (without asymptotic phase) of wavefronts:
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Corollary 2. Let g and w0 satisfy the assumptions (H) and (IC10), (IC20). If

(1.14) sup
s2[�h,0]

|�(·+ cs)� w0(s, ·)|µ < 1

for some c > c⇤ and µ > �1(c), then

lim
t!1

sup
x2R

|�(x+ ct)� u(t, x)|
⌘
�1(x+ ct)

= 0.

Clearly, the statement of Theorem I.4 (or Corollary 2) implies the uniqueness (up

to a translation) of non-critical traveling fronts propagating with the same velocity

c and having the same order of exponential decay at �1, cf. e.g. [32, Theorem

1.1], [58, Corollary 4.9]. In any event, the uniqueness of each front (including critical

one) to the monotone model (1.1) was established in [55, Theorem 1.2] by means

of the Berestycki-Nirenberg method of the sliding solutions. In the case when g is

non-monotone, the wave uniqueness was investigated in [1], by applying a suitable

L2-variant of the bootstrap argument suggested by Mallet-Paret in [34]. We recall

here that, in the case of a unimodal birth-function g, equation (1.1) can possess non-

monotone wavefronts (either slowly oscillating or eventually monotone). This fact

was deduced in [11, 20, 54] from the seminal results [33, 34, 35, 36] by Mallet-Paret

and Sell.

It is instructive to compare Theorem I.4 and Corollary 2 with the corresponding

results from the above mentioned works [37, 38, 39, 40, 58] (restricting them to the

particular family of the Mackey-Glass type di↵usive equations (1.1)). It is easy to

check that Theorem I.4 amplifies Theorem 4.1 from [58] which was proved under

more restrictive smoothness and geometric conditions on g and w0. (Theorem I.5A

below also extends the mentioned result by Wang et al. for the critical case c = c#).

In particular, the assumptions of [58] contain the inequality g0(x)  g0(0), x � 0,

which excludes from consideration the pushed waves, see [55, Subsection 1.2] for
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more detail. The approach of [58] is a version of the super- and sub-solutions method

proposed in [7] and then further developed in [32]. The proofs given in the present

paper are also based on the squeezing technique and the Phragmèn-Lindelöf principle

for reaction-di↵usion equations. Hence, we are also using adequate super- and sub-

solutions (which generally are not C1-smooth and are simpler than those considered

in [7, 32, 58]. In particular, the latter fact allows to shorten the proofs).

Another important approach to the wave stability problem in (1.1) is a weighted

energy method developed by Mei et al. [37, 38, 39, 40]. See also Kyrychko et al.

[25], Lv and Wang [29], Wu et al. [64]. This method is based on rather technical

weighted energy estimations and generally requires better properties from g and w0.

For instance, it was assumed in [29, 39] that g00(x)  0, x � 0, and that the weighted

initial perturbation �(s, x) = (�(x + cs) � w0(s, x))/⌘µ(x) belongs to the Sobolev

space H1(R) for some µ > �1 and for each fixed s 2 [�h, 0]. It was also assumed in

[29, 39] that � : [�h, 0] ! H1(R) is a continuous function that implies immediately

the fulfilment of (1.14), in virtue of the corresponding embedding theorem. Therefore

Corollary 2 can be also used in such a situation. However, in di↵erence with Corollary

2, the weighted energy method allows to prove the exponential stability of non-critical

traveling fronts. Consequently, it gives the same convergence rates as the Sattinger

functional analytical approach [48] gives in the case of non-delayed version of (1.1).

We recall that the latter approach is based on the spectral analysis of equation (1.1)

linearised along a wavefront. Thus a certain disadvantage of Theorem I.4 as well as

[7, Theorem 2], [32, Theorem 5.1], [58, Theorem 4.1] is that they do not give any

estimation of the rate of convergence in (1.10). In this regard, it is a remarkable

fact that super- and sub-solutions used in this work are also suitable to provide

rather short proofs of the exponential stability [asymptotical stability] of non-critical
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[respectively, critical] wavefronts in equation (1.1) considered with the birth function

g satisfying relatively weak restrictions (H) and L
g

= g0(0). For example, L
g

= g0(0)

if g is di↵erentiable on R+ where g0(x)  g0(0).

Theorem I.5. In addition to (H), suppose that L
g

= g0(0). If the initial function

w0 satisfies the assumptions (IC1’), (IC2’), then the following holds.

A. If c � c# and

lim
z!�1

w0(s, x)/�(x) = 1,

uniformly on s 2 [�h, 0], then

(1.15) |u(t, ·)/�(·+ ct)� 1|0 = o(1), t ! +1.

B. If c > c# and � 2 (�1(c),�2(c)) then

(1.16) sup
s2[�h,0]

|�(·+ cs)� w0(s, ·)|� < 1

implies that the solution u(t, x) of (1.1), (1.2) satisfies

sup
x2R

|u(t, x)� �(x+ ct)|
⌘
�

(x+ ct)
 Ce��t, t � 0,

for some C > 0 and � > 0.

To the best of our knowledge, the description of front convergence in the form

(1.15) was proposed by Chen and Guo [7]. Clearly, this kind of convergence is

equivalent to the weighted convergence expressed by (1.10) (if c > c#) and it is

stronger than the uniform convergence

sup
x2R

|u(t, x)� �(x+ ct)| ! 0, t ! +1.

The stability results stated in Theorem I.5 have the global character in that sense

that none smallness restriction is imposed on the norm (1.16) of perturbation �(x+
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cs) � w0(s, x). Remarkably, in the case where we do not assume anymore that

g is monotone, our approach still allows us to prove the local stability of fronts.

Even more than that, we are also able to present some global stability results. In

this way, our next main theorem and its corollary can be regarded as a further

development of [28, Theorem 2.1] and [64, Theorems 2.4 and 2.6]. Before formulating

the corresponding assertions, let us recall that the hypothesis

(UM) Let (H) be satisfied except for the monotonicity of g and suppose that L
g

=

g0(0) and g is bounded on R+

implies the existence of a unique normalised (at �1) positive semi-wavewfront

u(t, x) = �
c

(x + ct) to equation (1.1) for each c � c#, see e.g. [1, 19]. We re-

call here that the definition of a semi-wavewfront is similar to the definition of a

wavefront: the only part that is changing is the boundary condition �
c

(+1) = 

which should be replaced with lim inf
x!+1 �

c

(x) > 0.

Theorem I.6. Assume (UM) and let the initial function w0 satisfy (IC1’). For

c > c# we take � 2 (�1(c),�2(c)) and for c = c# we take � = �⇤. If we denote

⇠(x,�) = e�x, then the following holds.

A. The inequality (1.16) implies that the solution u(t, x) of (1.1), (1.2) converges

to the semi-wavefront �
c

(x + ct): more precisely, there are positive C, � such

that

sup
x2R

|u(t, x)� �(x+ ct)|
⇠(x+ ct,�)

 Ce��t, t � 0.

B. Let, in addition, |g0(u)| < 1 on some interval [ � ⇢, + ⇢], ⇢ > 0. If, for

some b 2 R, the initial function w0 and the semi-wavefront profile �
c

satisfies:

�(x� 2ch) 2 (� ⇢/2,+ ⇢/2), for x � b. Then � is actually a wavefront (i.e.
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�(+1) = ) and

|w0(s, x+ cs)� �(x+ cs)|  qe�(x+cs�b), (s, x) 2 ⇧0,

for q 2 (0, ⇢/2] implies that the solution u(t, x) of (1.1), (1.2) satisfies

(1.17) sup
x2R

|u(t, x)� �(x+ ct)|
⌘
�

(x+ ct)
 0.5⇢e��t, t � 0.

where � � 0 is zero i↵ c = c#.

Corollary 3. Let g satisfy (UM) and let g be a unimodal function, with a unique

point x
m

2 (0,) of local extremum (maximum). Suppose further that |g0(x)| <

1 for all x 2 [g(g(x
m

)), g(x
m

)]. Additionally, assume that the initial function w0

satisfy (IC1’) and (IC2’) and consider c > c#, � 2 (�1(c),�2(c)). Then inequality

(1.16) implies that the solution u(t, x) of (1.1), (1.2) uniformly converges to the

semi-wavefront �(x + ct). More precisely, there are positive C, � such that (1.17)

holds.

Let us illustrate Corollary 3 by considering the well-known di↵usive version of the

Nicholson’s blowflies equation

u
t

(t, x) = u
xx

(t, x)� �u(t, x) + pu(t� ⌧, x)e�u(t�⌧,x).(1.18)

By realising a re-scaling in space-time, we can transform this equation into the form

(1.1) with g(x) = (p/�)xe�x and h = ⌧�. In the last decade, the wavefront solutions

of equation (1.18) have been investigated by many authors, e.g. see [8, 11, 20, 28,

29, 31, 37, 39, 40, 58, 64]. If the positive parameters p, � are such that 1 < p/�  e,

then g satisfies the hypothesis (H) with L
g

= g0(0) and  = ln(p/�). In such a case,

Theorem I.5 guarantees the global stability of all wavefronts, including the minimal

one (these wavefronts are necessarily monotone). For the first time, such a global
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stability result was established by Mei et al. in [39]. Now, if e < p/� < e2, the

restriction of g on [0,] is not monotone anymore. Nevertheless, we still have that

L
g

= g0(0) while the inequality |g0(x)| < 1 holds for all x 2 [g(g(x
m

)), g(x
m

)], with

x
m

= 1. Therefore, for each p/� 2 (e, e2), Corollary 3 assures the global exponential

stability of all non-critical wavefronts to equation (1.18). Note that profiles of these

wavefronts are not necessarily monotone and they can oscillate slowly around  or

be non-monotone but eventually monotone at +1, cf. [11, 20, 28]. Observe also

that the upper estimation e2 for p/� is optimal [20, 54]. Under the same restriction

on p/�, the local stability of wavefronts to (1.18) was investigated in [28, 64].



CHAPTER II

Asymptotic convergence to pushed wavefronts

2.1 Proof of Theorems I.1 and I.2

Let u = �(x + c⇤t), c⇤ > c#, be a pushed traveling front to equation (1.1). In

the sequel, to simplify the notation, we will avoid the subscript ⇤ in c⇤ so that

u = �(x+ c⇤t) = �(x+ ct). As it is usual, we consider the moving coordinate frame

(t, z) where z = x+ ct. Set w(t, z) = u(t, z � ct), then equation (1.1) takes the form

w
t

(t, z) = w
zz

(t, z)� cw
z

(t, z)� w(t, z) + g(w(t� h, z � ch)),(2.1)

w(s, z) = w̃0(s, z) := w0(s, z � cs), (s, z) 2 ⇧0.(2.2)

First, following Fife and McLeod [14, Lemma 4.1] and Rothe [45, Lemma 1], we

prove the next assertion.

Lemma 1. Assume that the hypothesis (H) is satisfied. Then there exist positive

constants �, C, q+0 (depending only on g,�, c, h,�) and q�0 = � such that the inequality

(2.3) 0  w(s, z)  �(z) + q⌘(z), (s, z) 2 ⇧0,

with q 2 (0, q+0 ] implies

(2.4) 0  w(t, z)  �(z + Cq) + qe��t⌘(z), z 2 R, t � �h.

Similarly, the inequality

(2.5) �(z + Cq)� q⌘(z)  w(s, z)  , (s, z) 2 ⇧0,

22
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with q 2 (0, q�0 ] implies

(2.6) �(z)� qe��t⌘(z)  w(t, z)  , z 2 R, t � �h.

Proof. For the convenience of the reader, the proof is divided into five steps. Recall

that the positive numbers �0, � are defined in (H) and (IC), respectively.

Step I. We claim that given � 2 (0,), there are positive �⇤1 < �0, �⇤1 < �c such that

g(u)� g(u� qe�h)  q(1� 2�), for all (u, q) 2 [� �⇤1,+ �⇤1]⇥ [0, �], � 2 [0, �⇤1 ].

Indeed, it su�ces to note that, given � 2 (0,), the continuous function

G(u, q, �) :=

8
><

>:

1 + (g(u� e�hq)� g(u))/q, (u, q, �) 2 [� �⇤1,+ �⇤1]⇥ (0, �]⇥ [0, �⇤1 ],

1� e�hg0(u), u 2 [� �⇤1,+ �⇤1], q = 0, � 2 [0, �⇤1 ],

satisfies G(, q, 0) > 2�⇤1 , q 2 [0, �], for su�ciently small �⇤1 , �
⇤
1 (recall that g

0() < 1).

Thus G(u, q, �) > 2� for all (u, q) 2 [ � �⇤1, + �⇤1] ⇥ [0, �], � 2 [0, �⇤1 ] if �
⇤
1 , �

⇤
1 are

su�ciently small.

Step II. As in [14, 45], we have to construct appropriate super- and sub-solutions.

Consider the nonlinear operator N defined as

Nw(t, z) := w
t

(t, z)� w
zz

(t, z) + cw
z

(t, z) + w(t, z)� g(w(t� h, z � ch)).

By definition, continuous function w+ : R+ ⇥ R ! R is called a super-solution for

(2.1), if, for some z⇤ 2 R, this function is C1,2-smooth in the domains R+⇥ (�1, z⇤]

and R+ ⇥ [z⇤,+1) and

(2.7) Nw+(t, z) � 0 for t > 0, z 6= z⇤,

while

(2.8) (w+)z(t, z⇤�) � (w+)z(t, z⇤+) for t > 0.
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Sub-solutions w� are defined analogously, with the inequalities ”�” reversed in (2.7)

and (2.8). We will look for super- and sub-solutions of the form

w+(t, z) := �(z + ✏(t)) + qe��t⌘(z), w�(t, z) := �(z � ✏1(t))� qe��t⌘(z),

where, for appropriate positive parameters ↵, � (to be fixed later and depending only

on g,�, c, h,�), increasing ✏(t), ✏1(t) are defined by

✏(t) :=
↵q

�
(e�h � e��t) > 0, ✏1(t) := �↵q

�
e��t < 0, t > �h.

Note that the smoothness conditions and the second inequality in (3.3) with z⇤ = 0

are obviously fulfilled because of

@w+(t, 0+)

@z
� @w+(t, 0�)

@z
= �q�e��t < 0,

@w�(t, 0+)

@z
� @w�(t, 0�)

@z
= q�e��t > 0,

so that we have to check (2.7) only. Since g,�, ✏ are strictly increasing, we have, for

z 6= 0, that

Nw+(t, z) := ✏0(t)�0(z + ✏(t))� �qe��t⌘(z)� �00(z + ✏(t))� qe��t⌘00(z) +

c�0(z + ✏(t)) + cqe��t⌘0(z) + �(z + ✏(t)) + qe��t⌘(z)� g(w+(t� h, z � ch))

� ↵qe��t�0(z + ✏(t))� �qe��t⌘(z) + cqe��t⌘0(z) + qe��t⌘(z)� qe��t⌘00(z)

+g(�(z � ch+ ✏(t)))� g(�(z � ch+ ✏(t)) + qe��(t�h)⌘(z � ch));

Nw�(t, z) := �✏01(t)�0(z � ✏1(t)) + �qe��t⌘(z)� �00(z � ✏1(t)) + qe��t⌘00(z) +

c�0(z � ✏1(t))� cqe��t⌘0(z) + �(z � ✏1(t))� qe��t⌘(z)� g(w�(t� h, z � ch))

 �↵qe��t�0(z � ✏1(t)) + �qe��t⌘(z)� cqe��t⌘0(z)� qe��t⌘(z) + qe��t⌘00(z) +

g(�(z � ch� ✏1(t)))� g(�(z � ch� ✏1(t))� qe��(t�h)⌘(z � ch)).

Since � 2 (�1(c),�2(c)) and g0(0) > 1, we can choose su�ciently small � 2 (0, �⇤1)

and � 2 (0,/2) \ (0, �⇤1) \ (0, �), such that, for all s̄ < � it holds

��2 + c�+ 1� � � g0(s̄)e��ch+�h > 0.(2.9)
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In addition, we can take � such that the unique real roots z0 < z1 < z2 of the

equations

�(z0) = �/4, �(z1) + 0.25�⌘(z1) = �/2; �(z2) = � �/2,

are such that z1 < �ch < 0 < z2. From now on, we will fix ↵, q±0 defined by

q+0 = �e��h/2, q�0 = �, ↵ = (� + e�hL
g

)/�, with � := min
z2[z0,z2+ch]

�0(z).

We observe that ↵, q±0 and � depends only on g,�, c, h,�, �.

Step III. We claim that Nw+(t, z) � 0 for all z 6= 0, t � 0 and q  q+0 = �e��h/2.

Indeed, suppose first that z � ch+ ✏(t)  z1, then z  z1 + ch� ✏(t) < �✏(t) < 0

and

�(z � ch+ ✏(t)) < �/2, �(z � ch+ ✏(t)) + qe��(t�h)⌘(z � ch) < �.

As a consequence, we can invoke the mean value theorem and and (2.9) to conclude

that, for some s̄ 2 (0, �),

g(�(z � ch+ ✏(t)))� g(w+(t� h, z � ch)) = �qe��(t�h)⌘(z � ch)g0(s̄),

Nw+(t, z) � qe��t[��⌘(z) + c⌘0(z) + ⌘(z)� ⌘00(z)� e�h⌘(z � ch)g0(s̄)]

= qe��t+�z

�
1� � + c�� �2 � e�h��chg0(s̄)

�
> 0.

Similarly, if z � ch+ ✏(t) � z2, then we have that

+ �/2 � �(z � ch+ ✏(t)) + qe��(t�h)⌘(z � ch) � �(z � ch+ ✏(t)) � � �/2.

Therefore, due to Step I and (2.9), for all t � 0,

g(�(z�ch+✏(t)))�g(�(z�ch+✏(t))+qe��(t�h)⌘(z�ch)) � �qe��t⌘(z�ch)(1�2�),

Nw+(t, z) � qe��t ([1� �]⌘(z) + c⌘0(z)� ⌘00(z)� (1� 2�)⌘(z � ch)) �

qe��t

8
><

>:

e�z[1� � + c�� �2 � e��ch(1� 2�)], z < 0

�, z > 0

9
>=

>;
> 0.
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Finally, if z1 < z � ch+ ✏(t) < z2, we find that

�(z � ch+ ✏(t)) < � �/2, �(z � ch+ ✏(t)) + 0.25�⌘(z � ch+ ✏(t)) > �/2

so that �(z�ch+✏(t)) > �/2�0.25�⌘(z�ch+✏(t)) > �/4, and z+✏(t) 2 [z0, z2+ch].

Obviously,

|g(�(z� ch+ ✏(t)))� g(�(z� ch+ ✏(t))+ qe��(t�h)⌘(z� ch))|  L
g

qe��(t�h)⌘(z� ch).

Therefore, since ⌘(z) + c⌘0(z)� ⌘00(z) > 0 for z 6= 0 and ⌘(z) 2 (0, 1], we get

Nw+(t, z) � qe��t

�
↵� + ⌘(z) + c⌘0(z)� ⌘00(z)� � � e�hL

g

 
> 0

for all t � 0. Hence, there exist some constants ↵, �, q+0 > 0, depending only on

the wavefront profile �, the nonlinearity g and c, h,� such that, for any choice of

q 2 (0, q+0 ) it holds Nw+(t, z) > 0 for all t � 0 and z 6= 0. This proves the first

inequality in (3.3).

Step IV. We claim that Nw�(t, z)  0 for all z 6= 0, t � 0 and q  q�0 = �.

Indeed, suppose first that z � ch� ✏1(t)  z1, then z  z1 + ✏1(t) + ch < 0 and

�(z � ch� ✏1(t))� qe��(t�h)⌘(z � ch) < �(z � ch� ✏1(t)) < �/2.

As a consequence, the mean value theorem yields that for some s̄ < �,

g(�(z � ch� ✏1(t)))� g(w�(t� h, z � ch)) = qe��(t�h)⌘(z � ch)g0(s̄),

Nw�(t, z)  qe��t[�⌘(z)� cqe��t⌘0(z)� ⌘(z) + ⌘00(z) + e�h⌘(z � ch)g0(s̄)]

= �qe��te�z[1� � + c�� �2 � e�h��chg0(s̄)] < 0.

Similarly, if z � ch� ✏1(t) � z2, then we have that �(z � ch� ✏1(t)) � � �/2 and

therefore

g(�(z�ch�✏1(t)))�g(�(z�ch�✏1(t))�qe��(t�h)⌘(z�ch))  (1�2�)qe��t⌘(z�ch)
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for all t � 0, q 2 [0, �]. In consequence,

Nw�(t, z)  �qe��t ([1� �]⌘(z) + c⌘0(z)� ⌘00(z)� (1� 2�)⌘(z � ch)) 

�qe��t

8
><

>:

e�z[1� � + c�� �2 � e��ch(1� 2�)], z < 0

�, z > 0

9
>=

>;
< 0.

Finally, if z1 < z � ch� ✏1(t) < z2, we find that

�(z � ch� ✏1(t)) < � �/2, �(z � ch� ✏1(t)) + 0.25�⌘(z � ch� ✏1(t)) > �/2

so that �(z�ch�✏1(t)) > �/2�0.25�⌘(z�ch�✏1(t)) > �/4, and z�✏1(t) 2 [z0, z2+ch].

Obviously,

|g(�(z�ch�✏1(t)))�g(�(z�ch�✏1(t))�qe��(t�h)⌘(z�ch))|  L
g

qe��(t�h)⌘(z�ch).

Therefore, since ⌘(z) + c⌘0(z)� ⌘00(z) > 0 for z 6= 0 and ⌘(z) 2 (0, 1], we get

Nw�(t, z)  �qe��t{↵� + ⌘(z) + c⌘0(z)� ⌘00(z)� � � e�hL
g

}

< �qe��t(� + L
g

) < 0

for t � 0.

Step V. In view of (12) and the monotonicity properties of g, we have that

g(w+(t� h, z � ch))� g(w(t� h, z � ch)) � 0, t 2 [0, h], z 2 R.

Therefore,for (t, z) 2 (0, h] ⇥ (R \ {0}), the di↵erence �(t, z) := w(t, z) � w+(t, z)

satisfies the relations

�(0, z)  0, |�(t, z)|  + q+0 , �
zz

(t, z)� �
t

(t, z)� c�
z

(t, z)� �(t, z) =

Nw+(t, z)�Nw(t, z) + g(w+(t� h, z � ch))� g(w(t� h, z � ch)) =

Nw+(t, z) + g(w+(t� h, z � ch))� g(w(t� h, z � ch)) � 0,

@�(t, 0+)

@z
� @�(t, 0�)

@z
= q�e��t > 0.(2.10)
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We claim that �(t, z)  0 for all t 2 [0, h], z 2 R. Indeed, otherwise there exists

r0 > 0 such that �(t, z) restricted to any rectangle ⇧
r

= [�r, r]⇥ [0, h] with r > r0,

reaches its maximal positive value M > 0 at at some point (t0, z0) 2 ⇧
r

.

We claim that (t0, z0) belongs to the parabolic boundary @⇧
r

of ⇧
r

. Indeed,

suppose on the contrary, that �(t, z) reaches its maximal positive value at some

point (t0, z0) of ⇧
r

\ @⇧
r

. Then clearly z0 6= 0 because of (2.8). Suppose, for instance

that z0 > 0. Then �(t, z) considered on the subrectangle ⇧ = [0, r]⇥ [0, h] reaches its

maximal positive value M at the point (t0, z0) 2 ⇧ \ @⇧. Then the classical results

[43, Chapter 3, Theorems 5,7] shows that �(t, z) ⌘ M > 0 in ⇧, a contradiction.

Hence, the usual maximum principle holds for each ⇧
r

, r � r0, so that we can

appeal to the proof of the Phragmèn-Lindelöf principle from [43] (see Theorem 10 in

Chapter 3 of this book), in order to conclude that �(t, z)  0 for all t 2 [0, h], z 2 R.

But then we can again repeat the above argument on the intervals [h, 2h], [2h, 3h], . . .

establishing that the inequality

0  w(s, z)  �(z + ✏(s)) + qe��s⌘(z), z 2 R,

actually holds for all s � �h. Since ✏(t) increases on R, this proves (2) with C =

✏(1) = ↵e�h/�.

Since the same method applied (with C = ↵e�h/� in (2)) to the di↵erence

��(t, z) := w�(t, z)� w(t, z) leads to

�(z)� qe��s⌘(z) < �(z � ✏1(s))� qe��s⌘(z)  w(t, z)  , t � �h, z 2 R,

the proof of the lemma is completed.

Remark 2. It is worthwhile to note that the constants �, C, q±0 depend only on the

form of � in the sense that they will not change if we replace �(z) with a shifted

profile �(z + b), b 2 R, in the statement of Lema 1.
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Due to Remark 2, the inequalities (2), (2) can be presented in the form similar to

(12), (2):

Corollary 4. Assume that the hypothesis (H) is satisfied. Then the inequality

�(z)� q⌘(z)  w(s, z)  , (s, z) 2 ⇧0,

with q 2 (0, �] implies

�(z � Cq)� qe��t⌘(z)  w(t, z)  , z 2 R, t � �h.

Proof. By Remark 2, the statements of Lema 1 will not change if we replace �(z)

with a shifted profile �(z + b), b 2 R. Taking b = �Cq, we complete the proof of

Corollary 4.

As an immediate consequence of Lemma 1 and Corollary 4, we obtain the stability

of the wavefront solution u(t, x) = �(x+ ct) with respect to the norm | · |
�

:

Corollary 5. For every ✏ > 0 there exists � > 0 such that |�(·+ s0)� w(s, ·)|
�

< �,

s 2 [�h, 0], implies that |�(·+ s0)� w(t, ·)|
�

< ✏ for all t � 0.

Proof. Without loss of generality, we can assume that s0 = 0. From Theorem 1.4

and Proposition 2 from [55], we know that �0(z) = O(e�2z) at �1. This implies that

|�0(z)|  Kmin{1, e�2z}, z 2 R, for some positive K. In this way, for each fixed

p 2 R,

0 < �0(z + p)  Kmin{1, e�2(z+p)}  Ke�2|p| min{1, e�2z}, z 2 R.

Fix ✏ > 0 and consider � 2 (0, q+0 ) \ (0, ✏/(1 +K1)), where K1 = CKe�2Cq

+
0 . Next,

assume that |�(·)� w(s, ·)|
�

< �, s 2 [�h, 0]. This yields that

�(z)� �⌘(z) < w(s, z) < �(z) + �⌘(z), (s, z) 2 ⇧0,
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and therefore, due to Lemma 1 and Corollary 4,

�(z � C�)� �⌘(z) < w(t, z) < �(z + C�) + �⌘(z), t � 0, z 2 R.

Now, for some ŝ 2 (0, C�), it holds

�(z + C�) = �(z) + �(z + C�)� �(z) = �(z) + C��0(z + ŝ)

 �(z) + CKe�2Cq

+
0 �min{1, e�2z}  �(z) +K1�⌘(z).(2.11)

After establishing a similar lower bound for �(z � C�), we get

�(z)� (K1 + 1)�⌘(z) < w(t, z) < �(z) + (K1 + 1)�⌘(z), t � 0, z 2 R,

that is, |�(·)� w(t, ·)|
�

< �(K1 + 1) = ✏, t � 0.

In addition, Lemma 1 yields the following useful result

Corollary 6. Assume that w0(s, x) satisfies (IC). Then there exist positive �, ⇣1

such that for (t, z) 2 [�h,1)⇥ R we have

(2.12) �(z � ⇣1)� �e��t⌘(z)  w(t, z)  �(z + ⇣1) + q+0 e
��t⌘(z + ⇣1).

Proof. First, we will show that inequality (12) holds for w0(s, z � ⇣0) if we take

su�ciently large ⇣0. Indeed, let z0 be such that �(z0) + q+0 ⌘(z
0) =  and define ⇣0

from

Ae�µ⇣0 = q+0 min{e�µz

0
, e(��µ)z0}.

Then, for all z � z0, s 2 [�h, 0], it holds that w(s, z � ⇣0)  1  �(z) + q+0 ⌘(z).

Furthermore, because of the assumption (IC2) and the inequality � < µ, we have,

for all z  z0, s 2 [�h, 0], that w(s, z � ⇣0)  Aeµ(z�⇣0) =

q+0 min{e�µz

0
, e(��µ)z0}eµz  q+0 min{eµ(z�z

0), e�z}  q+0 ⌘(z) < �(z) + q+0 ⌘(z).
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Therefore, due to (2),

0  w(t, z � ⇣0)  �(z + Cq+0 ) + q+0 e
��t⌘(z), z 2 R, t � �h.

Hence, setting ⇣1 = ⇣0 + Cq+0 and using the translation invariance of equation (1.1),

we obtain the second inequality in (2.12).

Similarly, there exists z00 such that

�(z + z00)� q�0 ⌘(z)  0  w(s, z +B)  , z  0, s 2 [�h, 0];

�(z + z00)� q�0 ⌘(z)  � �  w(s, z +B)  , z � 0, s 2 [�h, 0].

Hence, by (2) and Remark 2, we obtain

�(z + z00 � Cq�0 )� q�0 e
��t⌘(z)  w(s, z +B)  , z 2 R, t � �h.

As a consequence, the both inequalities in (2.12) hold if we take ⇣1 = ⇣0 + C(q+0 +

q�0 ) + |B � z00|.

Remark 3. Observe that the hypothesis (IC3) was not used to prove the right-hand

side inequality in (2.12).

Next, it should be noted that the variable shift ✏(t) in w+(t, z) was needed only to

assure the inequality Nw+(t, z) � 0 on the finite interval z � ch + ✏(t) 2 [z1, z2], cf.

Step III. This observation suggests the following important modification of Lemma

1 (where we will take the same constants �, � > 0 which were defined in Step II of

the proof of Lemma 1):

Lemma 2. Let w(t, z) be a solution of (2.1), (2.2) with w̃0(s, z) 2 [0,]. Take � > 0

as in (2.9) and let R > ch be such that

0  w(t, z), �(z)  �, if z  �R + ch, t � �h, and

|w(t, z)� |, |�(z)� | < � if z � R� ch, t � �h.
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Furthermore, suppose that w(s, z)  �(z) + �⌘(z) for all (s, z) 2 ⇧0 and w(t, z) 

�(z) for all (t, z) 2 R+ ⇥ [�R � ch,R + ch]. Then w(t, z)  �(z) + �⌘(z)e��t for

all z 2 R, t � 0.

Proof. Set ⇢(t, z) = w(t, z)� �(z), then, for some ⇠(t, z) lying between points w(t�

h, z � ch) and �(z � ch), if (t, z) 2 [0,1)⇥ R we obtain

⇢
t

(t, z) = ⇢
zz

(t, z)� c⇢
z

(t, z)� ⇢(t, z) + g0(⇠(t, z))⇢(t� h, z � ch), z 2 R, t � 0.

Since ⇠(t, z) 2 [0, �] for z  �R, t � 0, and � ⇠(t, z) 2 [0, �] for z � R, t � 0, we

find that r(t, z) := �⌘(z)e��t, for |z| � R and t > 0 , satisfies

r
t

(t, z)� r
zz

(t, z) + cr
z

(t, z) + r(t, z)� g0(⇠(z, t))r(t� h, z � ch) =

�e��t

�
(1� �)⌘(z)� ⌘00(z) + c⌘0(z)� e�hg0(⇠(t, z))⌘(z � ch)

�
> 0.

In addition, by our assumptions, the piece-wise smooth function �(t, z) := w(t, z)�

(�(z)+r(t, z)) satisfies the inequalities �(t,±R)  0, |�(t, z)|  2+�, t � 0, z 2 R;

�(s, z)  0, s 2 [�h, 0], z 2 R. In consequence,

�
zz

(t, z)� �
t

(t, z)� c�
z

(t, z)� �(t, z) > �g0(⇠(t, z))�(t� h, z � ch) � 0,

for all t 2 [0, h], |z| � R. By the Phragmèn-Lindelöf principle [43], we conclude that

�(t, z)  0 for all t 2 [0, h], |z| � R. Since we also have assumed that w(t, z)  �(z)

for all (t, z) 2 R+⇥ [�R�ch,R+ch], we obtain that �(t, z)  0 for all t 2 [0, h], z 2

R. Finally, repeating the above arguments on the intervals [h, 2h], [2h, 3h], . . . , we

complete the proof of the lemma.

Finally, before starting with the proof of Theorems I.1 and I.2, we will establish

the following compactness result.
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Lemma 3. Assume that continuous function w : [�h,+1)⇥R ! [0,] is a classical

solution, for t > 0, of equation (2.1) and that t
j

! +1. Then there exists a

subsequence {t
jk
} ⇢ {t

j

} such that w(t
j

+s, z) converges, uniformly on each rectangle

[�h, 0] ⇥ [�m,m], m 2 N, to the restriction w⇤(s, z), (s, z) 2 ⇧0, of some entire

solution w⇤ : R2 ! [0,] of equation (2.1).

Proof. First, we observe that, for each fixed t > h, function g(w(t � h, z � ch)) is

locally Lipschitz continuous in z 2 R and therefore w,w
z

, w
zz

are Hölder continuous

in (h,+1)⇥R, cf. [30, Theorem 1]. Next, fix an arbitrary positive T > 2h+ 2 and

m 2 N and consider, for t
j

> T +2h, solutions w
j

(t, z) = w(t
j

+ t, z), (t, z) 2 D+ :=

[�T, T ]⇥ [�m� 1,m+ 1 + ch], of the equation

w
t

(t, z) = w
zz

(t, z)� cw
z

� w(t, z) + g
j

(t, z),

where g
j

(t, z) := g(w
j

(t�h, z� ch)). We claim that, for each ↵ 2 (0, 1), there exists

a positive K depending only on m,T,↵ such that the Hölder norms

|g
j

|D
↵

= sup
(t,z)2D

|g
j

(t, z)|+ sup
(t,z) 6=(s,x)2D

|g
j

(t, z)� g
j

(s, y)|
(|x� z|2 + |t� s|)↵/2

are uniformly bounded in D := [�T + 1 + h, T ]⇥ [�m,m] by K (i.e. |g
j

|D
↵

 K for

all j. Observe that |g
j

|D+
↵

is finite due to [30, Theorem 1]). In fact, since g satisfies

the Lipschitz condition on [0,], it su�ces to establish the uniform boundedness of

|w
j

|D1
↵

in a bigger domain D1 := [�T + 1, T ] ⇥ [�m,m + ch] ⇢ D+. Obviously, w
j

solves in D+ the initial-boundary value problem w = w
j

|
@D+ where w

j

|
@D+ denotes

the restriction of w
j

on the parabolic boundary @D+ := {�T}⇥[�m�1,m+1+ch][

[�T, T ]⇥{�m�1,m+1+ch} of D+. Let ⇢ : [�T, T ] ! [0, 1] be some nondecreasing

smooth function such that ⇢([�T,�T + 0.25]) = 0, ⇢([�T + 0.75, T ]) = 1. Then

w
j

= w
j,1 + w

j,2 where w
j,1 is the solution of the initial-boundary value problem
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w = 0|
@D+ for the equation

w
t

(t, z) = w
zz

(t, z)� cw
z

� w(t, z) + ⇢(t)g
j

(t, z),

and w
j,2 solves the initial-boundary value problem w = w

j

|
@D+ for the equation

w
t

(t, z) = w
zz

(t, z)� cw
z

� w(t, z) + (1� ⇢(t))g
j

(t, z).

Next, since |g
j

(t, z)|   for all (t, z) 2 D+, j 2 N, a priori estimate (of the type

1+�) established in [15, Theorem 4, Chapter 7] guarantees that |w
j,1|D+

↵

 K1, j 2 N,

where K1 depends only on m,T,↵. As consequence, since sup
D+

|w
j

|, j 2 N, are

uniformly bounded by , we deduce that sup
D+

|w
j,2| = sup

D+
|w

j

� w
j,1|, j 2 N,

are also uniformy bounded. In addition, (1 � ⇢(t))g
j

(t, z) = 0 in [�T + 0.75, T ] ⇥

[�m � 1,m + 1 + ch], so that we can invoke the interior Schauder estimates (see,

e.g, [15, Theorem 5, Chapter 3]) in order to deduce that |w
j,1|D1

↵

 K2, j 2 N, where

K2 > 0 depends only on ↵ and K1. Hence, |w
j

|D1
↵

 K1 +K2, j 2 N, and therefore

|g
j

|D
↵

 K := L
g

(K1 +K2) for all j.

Applying now Theorem 15 from [15, Chapter 3], we conclude that there exists

a subsequence {t
jk
} ⇢ {t

j

} such that w
jk
(t, z) converges, uniformly on [�T + 2 +

h, T � 1]⇥ [�m+1,m� 1], to the classical solution w
T,m

: [�T +2+2h, T ]⇥ [�m+

1,m � 1] ! [0,] of equation (2.1). Finally, considering m,T ! +1 and applying

a standard diagonal argument, we can assume that w
jk
(t, z) converges, uniformly on

compact subsets of R2 to an entire classical solution w⇤ : R2 ! [0,] of the functional

di↵erential equation (2.1). Observe that the arguments used to estimate |w
j

|D1
↵

can

be also applied without changes to w⇤ so that |w⇤|D1
↵

 K1 + K2 with the same

K1, K2.

Remark 4. Due to Lemma 3, we can define !-limit set !(w0) which consists from

the restrictions w⇤(s, z), (s, z) 2 ⇧0, of all possible entire limit solutions w⇤ =
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lim
k!+1 w

jk
to (2.1) (which are obtained by considering all possible sequences {t

j

}

converging to +1 in this lemma). Since each w⇤ is an entire solution, the set !(w0)

is invariant. Furthermore, since |w⇤|D
↵

 K1 +K2 where K1, K2 depend only on D

and ↵, the set !(w0) is pre-compact with respect to the topology of the uniform

convergence on bounded subsets of ⇧0. Actually !(w0) is compact in the mentioned

topology since each element of !(w0) can uniformly (on bounded sets) approximated

by w
j

.

Theorem II.1. Assume that u = �(x + c⇤t), c⇤ > c#, is a pushed traveling front

to equation (1.1). If initial function w0 satisfies all conditions (IC) then, for some

z0 2 R, the classical solution w = w(t, z) of the initial value problem (2.1), (2.2)

asymptotically converges to a shifted front profile:

(2.13) lim
t!1

|w(t, ·)� �(·+ z0)|� = 0.

In order to prove the above theorem, instead of looking for an appropriate Lya-

punov functional (as it was done in [14, 45]) for functional di↵erential equation (2.1),

we will use the Berestycki and Nirenberg method of the sliding solutions as well as

some ideas of the approach developed by Ogiwara and Matano in [42].

Proof. By Corollary 6, Lemma 3 and Remark 4, solution w = w(t, z) of the initial

value problem (2.1), (2.2) has a compact invariant !�limit set !(w0) such that for

some fixed ⇣1, it holds

(2.14) �(z � ⇣1)  w⇤(0, z)  �(z + ⇣1), z 2 R, for each w⇤ 2 !(w0).

Then the set

A = {a 2 R : w⇤(0, z)  �(z + a), z 2 R, for each w⇤ 2 !(w0)}
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contains ⇣1 and has �⇣1 as its lower bound. Therefore â = inf A is a well defined

finite number. Due to continuity of �, we have that â 2 A so that

w⇤(0, z)  �(z + â), z 2 R, for each w⇤ 2 !(w0).

In fact, since !(w0) is an invariant set, we have that w⇤(t, z)  �(z+â), z 2 R, t 2 R.

Suppose now for a moment that w⇤(0, z0) = �(z0 + â) for some finite z0 and some

w⇤ 2 !(w0). Therefore, since g is an increasing function, the strong maximum

principle yields w⇤(t, z) ⌘ �(z + â) for all t  0, z 2 R. In particular, w⇤(0, z) ⌘

�(z + â) so that, for some sequence t
n

! +1, it holds that w(t
n

+ s, z) ! �(z + â)

uniformly with respect to s 2 [�h, 0] and z from compact subsets of R. In addition,

Corollary 6 allows to evaluate the di↵erence |w(t
n

+ s, z) � �(z + â)|/⌘(z) in some

fixed neighbourhood of the endpoints z = �1 and z = +1 and to conclude that

w(t
n

+ s, z) ! �(z + â), n ! +1, in the norm | · |
�

and uniformly with respect to

s 2 [�h, 0]. By Corollary 13, the latter convergence implies (2.13) with z0 = â that

completes the proof of the theorem in the case when w⇤(0, z0) = �(z0 + â) holds for

some finite z0.

In this way, we are left to consider the situation when

(2.15) w⇤(0, z) < �(z + â), z 2 R, for each w⇤ 2 !(w0).

In virtue of (2.14), for any given � > 0, we can find R > 3ch+ 1 su�ciently large to

have, for all w⇤ 2 !(w0),

w⇤(0, z) < �(z+â) < �, for z  �R+ch+1, �(z+â) > w⇤(0, z) > ��, for z � R�ch�1.

Then, using (2.15) and the compactness of the set

{w⇤(0, ·) : [�R+ch+1, R�ch�1] ! [0,], w⇤ 2 !(w0)} ⇢ C[�R+ch+1, R�ch�1],
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we deduce the existence of & 2 (0, 1) such that

w⇤(0, z) < �(z + â� &), z 2 [�R + ch+ 1, R� ch� 1], w⇤ 2 !(w0).

It is clear that

�(z + â) <  < �(z + â� &) + �, z � R� ch.

Without the loss of generality, we also can suppose that & 2 (0, 1) is such that

�(z + â) < �(z + â� &) + �e�z, z  �R + ch+ 1.

Indeed, observe that �0(z)  Ce�2z, z  0, and therefore, for some ⇠ 2 (z+â�&, z+â),

�(z + â)� �(z + â� &) = �0(⇠)&  Ce�2(z+â)&  �e�z, z  0,

once &  e��2â�/C. Hence, invoking again the invariance property of !(w0), we can

conclude that for each w⇤ 2 !(w0) it holds

w⇤(t, z)  �(z + â� &) + �⌘(z), t 2 R, z 2 R,

and

w⇤(t, z)  �(z + â� &), z 2 [�R + ch+ 1, R� ch� 1], t 2 R.

By Lemma 2, this yields w⇤(t, z)  �(z + â � &) + �⌘(z)e��t, t � 0, z 2 R, where

â, &, � do not depend on the particular choice of w⇤ 2 !(w0). In consequence, since

w⇤(t, z) is an entire solution, we obtain that actually w⇤(0, z)  �(z+ â� &), z 2 R,

for all w⇤ 2 !(w0). This contradicts to the definition of â and shows that the case

(2.15) can not happen.

2.2 Proof of Proposition 2

First, observe that for each g satisfying the assumptions of Proposition 2, we can

find a monotone function g1 : [0,] ! [0,] possessing all the properties of g and
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such that g1(x)  g(x). Therefore, in view of the comparison principle, it will not

restrict the generality if we will assume additionally the monotonicity of g.

Here, we follow an approach, proposed by Aronson and Weinberger in [2, Theorem

3.1], and based on the maximum principle. In the mentioned work, it was established,

for every ✏ 2 (0,) and appropriate b
✏

> 0, the existence of a positive solution

q = q(x)  ✏ to the Dirichlet boundary value problem

q00(x)� q(x) + g(q(x)) = 0, x 2 I
✏

:= (0, b
✏

),

q(0) = q(b
✏

) = 0.

Since we are interested in the asymptotic behavior of u(t, x) � 0 and w0(s, x) 6⌘ 0,

without loss of generality, due to the strong maximum principle we can suppose that

w0(s, x) > 0 for all (s, z) 2 ⇧0. But then we can choose ✏ > 0 small enough to have

q(x)  u(x, s) for all x 2 I
✏

, s 2 [�h, 0]. Let �
A

denote the characteristic function of

subset A ⇢ R. Consider solution u = u
✏

(t, x) of the initial value problem u
✏

(s, x) =

�
I✏(x)q(x), (s, x) 2 ⇧0, to equation (1.1). Then the di↵erence �(t, x) = q(x)�u

✏

(t, x)

satisfies �(t, 0)  0, �(t, b
✏

)  0, t � 0, and

�
t

(t, x)� �
xx

(t, x) + �(t, x) = g(q(x))� g(u
✏

(t� h, x))  0, (t, x) 2 [0, h]⇥ I
✏

.

Hence, by the maximum principle, u
✏

(t, x) � q(x) on [0, h]⇥ I
✏

. Repeating the same

argument on [h, 2h]⇥ I
✏

, we obtain that u
✏

(t, x) � q(x) for all (t, x) 2 [h, 2h]⇥ I
✏

. It

is clear that this procedure yields the inequality q(x)  u
✏

(t, x) < 1 in [0,+1)⇥ I
✏

.

But then, since for each positive l, it holds that �
I✏(x)q(x) = u

✏

(s, x)  u
✏

(s+ l, x),

s 2 [�h, 0], x 2 R, we can use the Phragmèn-Lindelöf principle, in order to conclude

that u
✏

(t + l, x) � u
✏

(t, x) for all (t, x) 2 [0, h]⇥ R. Similarly to the above analysis,

step by step, we can extend the latter inequality for all (t, x) 2 R+ ⇥ R. Thus,
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for each fixed x 2 R, u
✏

(t, x) is a non-decreasing bounded function of t � 0. Let

u
✏

(x) = lim
t!+1 u

✏

(t, x), then u
✏

(x) 2 (0,] for every x 2 R.

Now, a direct application of Lemma 3 shows that u
✏

(x) solves

u00(x)� u(x) + g(u(x)) = 0, x 2 R

while the convergence u
✏

(x) = lim
t!+1 u

✏

(t, x) is uniform on compact subsets of R.

Since g(u) � u > 0 on (0,), the function u
✏

(x) cannot take (local) minimal values

in (0,). This implies the existence of u
✏

(±1) 2 {0,}. In other words, u(x) is a

positive stationary traveling wave solution of equation (1.1) considered with h = 0.

It is well known [19] that this is possible only when u
✏

(x) ⌘ .

Finally, we complete the proof by observing that, due to the maximum principle,

it holds u
✏

(t, x)  u(t, x) on [0,1)⇥ R.

2.3 Proof of Theorem I.3: auxiliary results

In Sections 3.2 and 3.4, we are always assuming that all the conditions of Theorem

I.3 are satisfied (recall also that, by simplifying the notation, we write c instead of

c⇤). The proof of this theorem will follow from a series of lemmas. In the first of

them we improve the asymptotic relation u(t, 0) =  + o(1) at +1 known from

Proposition 2. As we show below, this convergence is actually of the exponential

type.

Lemma 4. Assume that �1 < ��3 where �3 stands for a unique negative zero of the

characteristic function �


(z, c) := z2 � cz � 1 + g0()e�zch. If u(t, x) solves (1.1),

(1.2) with w0 6⌘ 0, then there exist numbers q, ⌫ > 0 such that

u(t, 0) � � qe�⌫t for all t � 0.(2.16)
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Figure 2.1: Domains R[r, h], R1, R± ⇢ B± and lines L±.

Proof. First, we fix a positive � 2 (�1,��3)\ (�1,�2) and � < min{c�, �⇤1} such that

��2 + c�+ 1� � � g0(s̄)e��ch+�h > 0 for s̄ < �,

where � < �⇤1, �
⇤
1 , z1 < 0 < z2 are defined in Steps I, II of Lemma 1. Following [14],

we will construct a sub-solution to (1.1) of the form

u�(t, x) = �+(t, x) + ��(t, x)� � q(t, x),

where �±(t, x) = �(±x+ ct� ✏(t)), q(t, x) = �e��t✓(t, x) with ✓(t, x)  1 are defined

by

✓(t, x) := ⌘(�|x|+ ct� ✏(1)� z1) =

8
>>>>><

>>>>>:

e�(�x+ct�✏(1)�z1), if (t, x) 2 B+,

e�(x+ct�✏(1)�z1), if (t, x) 2 B�,

1, if (t, x) 2 [�h,1)⇥ R \ (B+ [B�),

B± := [�h,1)⇥ R \ {(t, x) : ⌥x+ ct� ✏(1) < z1},

L± := [�h,1)⇥ R \ {(t, x) : ⌥x+ ct� ✏(1) = z1},

with an appropriate ✏(t) satisfying ✏0(t) > 0, ✏(t) < 0. Then ✏(1) + z1 < �ch and
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therefore B+ \ B� = ;. See also Figure 1. Set

N1u�(t, x) := (u�)t(t, x)� (u�)xx(t, x) + u�(t, x)� g(u�(t� h, x)),

�̃±(t, x) := �(±x+ c(t� h)� ✏(t)) < �±(t� h, x).

Since u�(t, x) = u�(t,�x), it holds that N1u�(t, x) = N1u�(t,�x). In view of

monotonicity of g and �, we have

N1u�(t, x)  g(�̃+(t, x)) + g(�̃�(t, x))� g
⇣
�̃+(t, x) + �̃�(t, x)� � q(t� h, x)

⌘

�✏0(t)[�0(x+ ct� ✏(t)) + �0(�x+ ct� ✏(t))]� � q(t, x) + q
xx

(t, x)� q
t

(t, x).

Claim I: N1u�(t, x) = N1u�(t,�x) < 0 for x � 0, t > 0, (t, x) 62 L±.

By Step II of Lemma 1, �x+ c(t� h)� ✏(t) � z2 implies � �/2 < �̃�(t, x). Since

x � 0, we also have  � �/2 < �̃�(t, x)  �̃+(t, x). By Step I of Lemma 1, for

� 2 (0, �⇤1), � < � � �/2,

g(�̃�(t, x))� g(�̃�(t, x)� [� �̃+(t, x) + q(t� h, x)])

 e��h(1� 2�)[� �̃+(x, t) + q(t� h, x)].

Hence, since ✓(t, x) is non-decreasing in t, we have, for t > 0, that N1u�(t, x) 

(1� 2�)e��h[(� �̃+(t, x)) + q(t� h, x)] + g(�̃+(t, x))� � q(t, x) + q
xx

(t, x)� q
t

(t, x)

 ��̃+(t, x) + (1� 2�)�e��t✓(t� h, x) + g(�̃+(t, x))� q(t, x) + q
xx

(t, x)� q
t

(t, x)

 g(�̃+(t, x))� �̃+(t, x) + q(t, x)

8
><

>:

�2 � c�� 1 + � + (1� 2�)e��ch, if (t, x) 2 B+,

�2�, if (t, x) 2 [0,1)⇥ R+ \B+.

On the other hand, it is known (see e.g. [55, Remark 1]) that, for some C > 0, it

holds

0  � �̃+(t, x)  Ce��3✏(t)e�3(x+ct), t � �h, x 2 R.(2.17)
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This implies that, for t > 0, x � 0, �x+ c(t� h)� ✏(t) � z2, it holds that

N1u�(t, x)  Ce��3✏(1)e�3xe�3ct

+�e��t

8
><

>:

e�(�x+ct�✏(1)�z1)[�2 � c�� 1 + � + (1� 2�)e��ch], if (t, x) 2 B+,

�2�, if (t, x) 2 [0,1)⇥ R+ \B+,

 e��t

8
><

>:

e��x[�(�2 � c�� 1 + � + (1� 2�)e��ch) + Ce��3✏(1)], if (t, x) 2 B+,

�2�2 + Ce��3✏(1), if (t, x) 2 [0,1)⇥ R+ \B+.

As a consequence, there exists large negative ✏(1) (depending on � and �3) such

that

N1u�(t, x) < 0 for t > 0, �x+ c(t� h)� ✏(t) � z2, (t, x) 62 L+.

Next, if �x + c(t � h) � ✏(t)  z1 then 0  �̃�(t, x)  �/2 and (t, x) 2 B+. Thus

✓(t� h, x) = e�(�x+ct�ch�✏(1)�z1) and, for some s̄ < �/2,

g(�̃�(t, x))� g(�̃�(t, x)� [� �̃+(t, x) + q(t� h, x)]) = g0(s̄)[� �̃+(t, x) + q(t� h, x)].

Thus, recalling that z1 < 0, for large ✏(1) < 0 (which depends on � and �3), we get

N1u�(t, x)  g0(s̄)[� �̃+(t, x) + q(t� h, x)]� q(t, x) + q
xx

(t, x)� q
t

(t, x)

 �e��te�(�x+ct�✏(1)�z1)[�2 � c�� 1 + � + g0(s̄)e(��c�)h] + g0(s̄)[� �̃+(t, x)]

 �e��te��x[�2 � c�� 1 + � + g0(s̄)e(��c�)h] + g0(s̄)Ce�3(x+ct�✏(t))

 e��xe��t

�
�[�2 � c�� 1 + � + g0(s̄)e(��c�)h] + g0(s̄)Ce��3✏(1)

 
< 0.

Finally, consider z1  �x + c(t � h) � ✏(t)  z2. Recall that � > 0 defined in Step

II of Lemma 1 depends only on �,� and satisfies � < min
⇣2[z1,z2+ch] �0(⇣). Therefore,

if we take ✏0(t) = ↵�e��t for some ↵ > 0, then

|g(�̃�(t, x))�g(�̃+(t, x)+�̃�(t, x)��q(t�h, x))|  L
g

[Ce��3✏(t)e�3(x+ct)+q(t�h, x)].
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In consequence, if ↵ is su�ciently large then N1u�(x, t)  CL
g

e�3(�✏(t)+x+ct)

+

8
><

>:

�e��t{�↵� + e�(�x+ct�✏(1)�z1)[�2 � c�� 1 + � + L
g

e(���c)h]}, if (t, x) 2 B+,

�e��t[�↵� + � � 1 + L
g

e�h], if (t, x) 2 [0,1)⇥ R+ \B+,


e��t

�
�[�↵� + L

g

e�h] + CL
g

e��3✏(1)e�3x
 
< 0, for (t, x) 2 R+ ⇥ R+.

Claim II: There exists t0 > 0 such that u�(s, x)  u(s+ t0, x) for x 2 R, s 2 [�h, 0].

Since �2 > �, there exists r0 > 0 depending on ✏(�h), ✏(1), z1 such that, for s 2

[�h, 0],

u�(s, x)  �(�|x|+ cs� ✏(s))� �⌘(�|x|+ cs� z1 � ✏(1)) < 0 if |x| � r0.

Clearly, u�(s, x) <  for all |x|  r0, s 2 [�h, 0] and therefore, by Proposition 2,

u�(s, x) < u(t0 + s, x), |x|  r0, s 2 [�h, 0], for an appropriate t0 > 0.

Claims I and II allow to complete the proof of Lemma 4. First, for r > 0,

consider rectangle R[r, h] = [0, h] ⇥ [�r, r]. Set �(t, x) := u�(t, x) � u(t + t0, x), the

function �(t, x) is smooth in [�h,+1)⇥R \ {L� [L+} (in particular, in the regions

R± = R[r, h] \ B±, R1 = R[r, h] \ (R̄+ [ R̄�)). Since �(s, x)  0 in [�h, 0]⇥ R and

�
t

(t, x)� �
xx

(t, x) + �(t, x)  g(u�(t� h, x))� g(u(t+ t0 � h, x))  0,

for all (t, x) 2 [0, h]⇥R\{L�[L+}, the maximum principle assures that the function

�(t, x) in R[r, h] is ether negative or it reaches a non-negative maximum at a point

P1 = (t1, x1) belonging to @R1 [ @R+ [ @R�\{h} ⇥ (�r, r). It is easy to see that

P1 62 L±. Indeed, if P1 2 L± (see Fig. 1) then �
x

(P1+) � �
x

(P1�) = ��e��t1 > 0.

Thus the non-negative maximum of �(t, x) on R[r, h] is attained at a point from the

parabolic boundary of R[r, h]. In consequence, the usual maximum principle holds

for each R[r, h] so that, just as it was done in Step V of the proof of Lemma 12, we

can appeal to the Phragmèn-Lindelöf principle in order to conclude that �(t, z)  0
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for all t 2 [0, h], z 2 R. Applying the above argument consecutively on the intervals

[h, 2h], [2h, 3h], . . . we find that �(t, x)  0 for all t � �h, x 2 R. Therefore, in view

of (2.17),

u(t+ t0, 0) � 2�(ct� ✏(1))� � �e��t � � q0e��t, t � �h,

for some su�ciently large q0 > �. Obviously, this yields (2.16) with appropriate

q > q0.

Corollary 7. The conclusion of Lemma 4 holds without the assumption �1 < ��3.

Proof. First, we observe that there exists a monotone function ĝ(x)  g(x) satisfying

the hypothesis (H) and such that the equation

u
t

(t, x) = u
xx

(t, x)� u(t, x) + ĝ(u(t� h, x))(2.18)

has a pushed wavefront �̂(ĉt+x) with the associated eigenvalues �̂1, �̂3 = �3 such that

�̂1 < ��̂3. Indeed, let gn(x)  g(x), be a sequence of monotone functions satisfying

(H), coinciding with g(x) on [1/n,], uniformly on [0,] converging to g(x) and such

that lim
n!+1 g0

n

(0) = 1. Then [27, Lemma 3.5] implies that c
n

:= c⇤(gn)  c := c⇤(g)

while the proof of Proposition 1 shows that lim inf
n!+1 c

n

� c. This means that

lim
n!+1 c

n

= c > c# > c(n)# and lim
n!+1 �(n)1 = 0 < ��3 where, similarly to c#,�1,

the numbers c(n)# ,�(n)1 are determined from the characteristic equation (1.4) with g0(0)

replaced by g0
n

(0).

In consequence, if û(t, x) denotes the solution of the initial value problem (1.2) for

(2.18), with w0 6⌘ 0, then Lemma 4 implies that û(t, 0) � � qe�⌫t, t > 0, for some

positive q, ⌫. Finally, by comparing initial value problems (1.1), (1.2) and (2.18),

(1.2) and invoking the Phragmèn-Lindelöf principle, we get that u(t, 0) � û(t, 0) �

� qe�⌫t for all t > 0.
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Corollary 8. Assume that all the conditions of Theorem I.3 are satisfied. Then

there exist K > 1, t1 > 0 and z0, z00 2 R such that

u(t, x) � �(�|x|+ ct� z0)�Ke��t⌘(�|x|+ ct� z00) for all t > t1 � h, x 2 R.

Proof. Consider u�(t, x) = �(�|x|+ ct� ✏(t))� �e��t✓(t, x). Analyzing the proof of

Claim I of Lemma 4, we can easily find that it is also valid for x 6= 0 if we replace

�+(t, x) with . Moreover, in such a case, the restriction �1 < ��3 is unnecessary

(recall that this restriction appears due to the term �+(t, x)�). Hence, we conclude

that, for an appropriate choice of ✏(t), it holds N1u�(t, x)  0 for all x > 0, t >

0, (t, x) 62 L+. Since N1u�(t, x) = N1u�(t,�x), we conclude that u� is a sub-

solution in the region x 6= 0, t > 0, (t, x) 62 L±. In addition, for some su�ciently

large t1 > 0, it holds

u(t+ t1, 0) � � qe��(t+t1) > �(ct� ✏(�h))� �e��t⌘(ct� ✏(1)� z1) =

�(ct� ✏(�h))� �e��t > u�(t, 0) for all t � �h.

Now, arguing as in Claim II of the proof of Lemma 4, we can also assume that t1

is chosen in such a way that u�(s, x)  u(s + t1, x) for x 2 R, s 2 [�h, 0]. But

then, using the Phragmèn-Lindelöf principle in the regions [hj, h(j + 1)]⇥ [0,+1),

[hj, h(j + 1)] ⇥ (�1, 0], j = 0, 1, . . . according to the procedure established in the

last paragraph of the proof of Lemma 4, we conclude that, for all x 2 R, t � t1 � h,

it holds that

u(t, x) � u�(t� t1, x) = �(�|x|+ c(t� t1)� ✏(t� t1))� �e��(t�t1)t✓(t� t1, x) �

�(�|x|+ c(t� t1)� ✏(1))� �e��(t�t1)t⌘(�|x|+ c(t� t1)� ✏(1)� z1).

This completes the proof of the corollary.
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Lemma 5. Assume all the conditions of Theorem I.3 and suppose that for some

sequence t
n

! +1 and s1, s2 2 R, it holds

lim
n!1

sup
x0

|u(t
n

+ s, x)� �(x+ c(t
n

+ s) + s1)|/⌘(x+ ct
n

) = 0,(2.19)

lim
n!1

sup
x�0

|u(t
n

+ s, x)� �(�x+ c(t
n

+ s) + s2)|/⌘(�x+ ct
n

) = 0,(2.20)

uniformly on s 2 [�h, 0]. Then for every � > 0 there exists T (�) > 0 such that

sup
x0

|u(t, x)� �(x+ ct+ s1)|
⌘(x+ ct)

< � for all t � T (�),(2.21)

sup
x�0

|u(t, x)� �(�x+ ct+ s2)|
⌘(�x+ ct)

< � for all t � T (�).

Proof. It su�ces to establish (2.21), since u(t,�x) also solves equation (1.1) and

satisfies all the hypotheses of Theorem I.3. Without restricting generality, we can

take s1 = 0. We know from Corollary 7 that u(t, 0) �  � qe�⌫t, t � 0. Fix

� 2 (0,min{⌫,�c�3}) and consider ✏(t) = ↵���1e��t (with ↵ defined in Step II of

Lemma 1) and

u
n

(t, x) = �(x+ ct+ ct
n

� ↵��1e�h� + ✏(t))� �e��t⌘(x+ ct+ ct
n

).

Let positive integer N = N(�) be such that �e⌫tN > q and

sup
(s,x)2[�h,0]⇥(�1,0]

|u(t
n

+ s, x)� �(x+ c(t
n

+ s))|
⌘(x+ c(t

n

+ s))
< � for all n � N(�).

Then we obtain, for all for (s, x) 2 [�h, 0]⇥ (�1, 0],

u
N

(s, x)  �(x+ c(t
N

+ s))� �⌘(x+ c(t
N

+ s))  u(t
N

+ s, x).

Let us show now that a similar relation holds for all (t, x) 2 [t
N

,1)⇥{0} once N(�)

is large. Indeed, we have that u
N

(t, 0)  � �e��t for all t � 0 so that,

u(t+ t
N

, 0)� u
N

(t, 0) � �e��t � qe�⌫tN e�⌫t > 0, t � 0.
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Next, observe that u
n

(t, x) = w�(t, x + c(t + t
n

)) where w� is defined in Lemma 1

(by Remark 2, the summand �↵��1e�h within the argument of � doesn’t matter).

Since � < �, we find that (u
n

)
t

(t, x) � (u
n

)
xx

(t, x) + u
n

(t, x) � g(u
n

(t � h, x)) =

(Nw�)(t, x+ c(t+ t
n

)) < 0 for all (t, x) 2 [0,1)⇥R, x+ ct+ ct
n

6= 0. Furthermore,

if x0 + ct0 + ct
n

= 0 at some point (x0, t0) then (u
n

)
x

(t0, x0 + 0) � (u
n

)
x

(t0, x0 � 0) =

��e��t

0
> 0. Therefore, repeatedly applying the Phragmèn-Lindelöf principle in the

regions [hj, h(j+1)]⇥(�1, 0], j = 0, 1, . . . according to the procedure established in

the last paragraph of the proof of Lemma 4, we conclude that, for all x  0, t � �h,

u(t+ t
N

, x) � u
N

(t, x) � �(x+ c(t+ t
N

)� ↵��1e�h�)� �⌘(x+ c(t+ t
N

)).

Hence, taking positive constant K1 = K1(↵, �, h) as in (2.11), we obtain that

(2.22) u(t, x) � �(x+ ct)� �(1 +K1)⌘(x+ ct), t � t
N

� h, x  0.

On the other hand, by our assumptions, for all for (s, x) 2 [�h, 0]⇥ (�1, 0],

(2.23) u(t
N

+ s, x)  �(x+ c(t
N

+ s)) + �⌘(x+ c(t
N

+ s)).

If, in addition, N = N(�) is so large that

�(c(t
N

+ s)) + �⌘(c(t
N

+ s)) > , s 2 [�h, 0],

then (2.23) holds also for all (s, x) 2 ⇧0. Therefore for � 2 (0, q0], by Lemma 1,

u(t+ t
N

, x)  �(x+ c(t
N

+ t) + C�) + �e��t⌘(x+ c(t
N

+ t)), t � 0, x 2 R,

for positive C > 0 defined in Lemma 1. Next, due to (2.11), for all (t, x) 2 R2, we

have

�(x+ c(t
N

+ t) + C�)  �(x+ c(t
N

+ t)) +K1�⌘(x+ c(t
N

+ t)).

In consequence, we obtain

u(t, x)  �(x+ ct) + �(1 +K1)⌘(x+ ct), for t � t
N

, x  0.
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The latter inequality together with (2.22) imply (2.21).

2.4 Proof of Theorem I.3: main arguments

Set z = x+ ct and w(t, z) := u(t, x) = u(t, z � ct), then w(t, z) satisfies equation

(2.1), (2.2) for (t, z) 2 R+⇥R and possesses a compact and invariant !-limit set !(w0)

defined in Remark 4. Consider the semi-infinite strip ⌦ = {(s, z) 2 ⇧0, z  �ch}.

By Corollary 6 and Remark 3, for some K > 0, ⇣1 2 R, it holds

w(t, z)  �(z + ⇣1) +Ke��t⌘(z + ⇣1), z 2 R, t � �h.(2.24)

Therefore the set

A = {a 2 R : v(s, z)  �(z + a), (s, z) 2 ⌦, for each v 2 !(w0)}

in non-empty. Since, by Corollary 8,

�(z � z1)�K�e��t⌘(z � z1)  w(t, z), z  ct, t � �h,(2.25)

A is bounded below. Set â := inf A, obviously, â 2 A. We claim that v⇤(s⇤, z⇤) =

�(z⇤+ â) for some (s⇤, z⇤) 2 ⌦ and v⇤ 2 !(w0). Indeed, suppose on the contrary that

v(s, z) < �(z + â) for all (s, z) 2 ⌦, v 2 !(w0).(2.26)

For positive & and an entire solution v 2 !(w0), v : R2 ! [0,], consider ⇢(t, z) =

v(t, z)��(z+ â� &). Let R > ch be such that �(�R+ ⇣1) < �. Then, for each ⇠(t, z)

lying between points v(t� h, z � ch) and �(z + â� & � ch) with z  �R, t 2 R, we

have ⇠(t, z) 2 (0, �). Next, set r(t, z) = ⌘(z)e��t and let � be as in (2.9). In view of

(2.9),

r
t

(t, z)� r
zz

(t, z) + cr
z

(t, z) + r(t, z) = ⌘(z)e��t[1� � � �2 + c�]

� ⌘(z)e��tg0(⇠(t, z))e��ch+�h, t > 0, z  �R, & > 0, v 2 !(w0),
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⇢
t

(t, z) = ⇢
zz

(t, z)� c⇢
z

(t, z)� ⇢(t, z) + g0(⇠(t, z))⇢(t� h, z � ch), t 2 R, z  �R.

On the other hand, since the set !(w0) is compact and invariant (the latter means

that !(w0) consists of entire solutions v : R2 ! [0,]) and � increases on R, we can

fix & > 0 such that (3.20) implies

(2.27) v(t, z) < �(z + â� &), t > 0, �R  z  �ch, v 2 !(w0).

Without loss of generality, we can also suppose that & is su�ciently small to meet

�(z + â) < �(z + â� &) + ⌘(z)e��s for all z 2 R, s 2 [�h, 0].(2.28)

Now, we set �(t, z) := ⇢(t, z) � r(t, z). Note that, by (3.20) and (2.28), for all for

s 2 [�h, 0], z  �ch, it holds

�(s, z) = v(s, z)� (�(z + â� &) + ⌘(z)e��s) < v(s, z)� �(z + â) < 0,

and therefore, in virtue of the above mentioned properties of ⇢, r,

�
zz

(t, z)� �
t

(t, z)� c�
z

(t, z)� �(t, z)

� �g0(⇠(t, z))⇢(t� h, z � ch) + ⌘(z)e��tg0(⇠(t, z))e��ch+�h

= �g0(⇠(t, z))�(t� h, z � ch) > 0 for z  �R, t 2 [0, h].

Taking into account that, due to (2.27), it holds � � 1 < �(t, z) < 0 for all t 2

[0, h], �R  z  �ch, we can invoke now the Phragmèn-Lindelöf principle [43] in

order to conclude that �(t, z) < 0 for all t 2 [0, h], z  �R. But then, by repeating

the above argument for the time intervals [h, 2h], [2h, 3h], . . . , and using (2.27) we

conclude that

v(t, z)  �(z + â� &) + ⌘(z)e��t

for all t � 0, z  �ch. Due to the invariance property of !(w0) this yields

v(s, z) < �(z + â� &), �h  s  0, z  �ch, v 2 !(w0),
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contradicting the definition of â.

Hence, w⇤(s⇤, z⇤) = �(z⇤ + â) for some (s⇤, z⇤) 2 ⌦ and w⇤ 2 !(w0). Therefore,

by the strong principle maximum and invariance property of !(w0), we obtain that

� 2 !(w0).

Next, it follows from (2.24) and (2.25) that, for all z  ct, t � �h, it holds

|w(t, z)� �(z + â)|  �(z + ⇣1)� �(z � z1) +Ke��t(⌘(z � z1) + ⌘(z + ⇣1)).

In consequence, for each ✏ > 0 we can find T (✏) > 0 such that

|w(t+ s, z)� �(z + â)| < ✏ for t � T (✏), cT (✏)  z  ct, s 2 [�h, 0].

and

|w(t, z)� �(z + â)|
⌘(z)

< ✏ for t � T (✏), z  �cT (✏), s 2 [�h, 0].

On the other hand, since � 2 !(w0), there exist tn ! 1 and an integer n(✏) so that:

|w(t
n

+ s, z)� �(z + â)|
⌘(�cM)

< ✏, n � n(✏), |z|  cT (✏), s 2 [�h, 0].

Obviously, the last three inequalities imply (2.19). Moreover, by considering the

solution û(t, x) = u(t,�x) together with the obtained sequence {t
n

}, we can see that

(2.20) is also satisfied for a subsequence {t
nj} ⇢ {t

n

} and an appropriate s2. Finally,

an application of Lemma 5 completes the proof of Theorem I.3.



CHAPTER III

Speed selection problem

3.1 Super- and sub-solutions: definition and properties

The stability analysis of a wavefront u = �(x + ct) is usually realised in the co-

moving coordinate frame z = x+ ct so that w(t, z) := u(t, z � ct) = u(t, x). Clearly,

w satisfies the equation

w
t

(t, z) = w
zz

(t, z)� cw
z

(t, z)� w(t, z) + g(w(t� h, z � ch)),(3.1)

while the front profile �(z) is a solution of the stationary equation

0 = �00(z)� c�0z � �(z) + g(�(z � ch)).(3.2)

In order to study the front solutions of (3.1), (3.2), di↵erent versions of the method

of super- and sub- solutions were successfully applied in [31, 49, 55, 63] (in the

case of stationary equations similar to (3.2)) and in [7, 32, 49, 51, 58] (in the case

of non-stationary equations similar to (3.1)). An e�cacious construction of these

solutions is the key to the success of this approach. In particular, the studies of

front’s stability in [32, 58] had used C3-smooth super- and sub-solutions previously

introduced by Chen and Guo in [7, Lemma 3.7]. It is well known that, by cautiously

weakening smoothness restrictions, we can improve the overall quality of super- and

sub- solutions, cf. [14, 31, 45, 49, 55, 58, 63]. In this paper, inspired by the latter

51
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references, we propose to work with somewhat more handy C1-smooth super- and

sub-solutions:

Definition 1. Continuous function w+ : [�h,+1) ⇥ R ! R is called a super-

solution for (3.1), if, for some z⇤ 2 R, this function is C1,2-smooth in the domains

[�h,+1)⇥ (�1, z⇤] and [�h,+1)⇥ [z⇤,+1) and, for every t > 0,

(3.3) Nw+(t, z) � 0, z 6= z⇤, while (w+)z(t, z⇤�) > (w+)z(t, z⇤+),

where the nonlinear operator N is defined by

Nw(t, z) := w
t

(t, z)� w
zz

(t, z) + cw
z

(t, z) + w(t, z)� g(w(t� h, z � ch)).

The definition of a sub-solution w� is similar, with the inequalities reversed in (3.3).

The following comparison result is a rather standard one. However, since sub-

and super-solutions considered in this paper have discontinuous spatial derivates

and, in addition, equation (3.1) contains shifted arguments, we give its proof for the

completeness of our exposition. See also [14, 45, 49, 58].

Lemma 1. Assume (H). Let w+, w� be a pair of super- and sub-solutions for equa-

tion (3.1) such that |w±(t, z)|  CeD|z|, t � �h, z 2 R, for some C,D > 0 as well

as

w�(s, z)  w0(s, z)  w+(s, z), for all s 2 [�h, 0], z 2 R.

Then the solution w(s, z) of equation (3.1) with the initial datum w0 satisfies

w�(t, z)  w(t, z)  w+(t, z) for all t � �h, z 2 R.

Proof. In view of the assumed conditions, we have that

±(g(w±(t� h, z � ch))� g(w(t� h, z � ch))) � 0, t 2 [0, h], z 2 R.
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Therefore, for all t 2 (0, h], the function �(t, z) := ±(w(t, z)� w±(t, z)) satisfies the

inequalities

�(0, z)  0, |�(t, z)|  2CeD|z|, �
zz

(t, z)� �
t

(t, z)� c�
z

(t, z)� �(t, z) =

±(Nw±(t, z)�Nw(t, z) + g(w±(t� h, z � ch))� g(w(t� h, z � ch))) =

±Nw±(t, z)± (g(w±(t� h, z � ch))� g(w(t� h, z � ch))) � 0, z 2 R \ {z⇤};

(3.4)
@�(t, z⇤+)

@z
� @�(t, z⇤�)

@z
= ±

✓
@w±(t, z⇤�)

@z
� @w±(t, z⇤+)

@z

◆
> 0.

We claim that �(t, z)  0 for all t 2 [0, h], z 2 R. Indeed, otherwise there exists

r0 > 0 such that �(t, z) restricted to any rectangle ⇧
r

= [�r, r]⇥ [0, h] with r > r0,

reaches its maximal positive value M
r

> 0 at at some point (t0, z0) 2 ⇧
r

.

We claim that (t0, z0) belongs to the parabolic boundary @⇧
r

of ⇧
r

. Indeed,

suppose on the contrary, that �(t, z) reaches its maximal positive value at some

point (t0, z0) of ⇧
r

\@⇧
r

. Then clearly z0 6= z⇤ because of (3.4). Suppose, for instance

that z0 > z⇤. Then �(t, z) considered on the subrectangle ⇧ = [z⇤, r]⇥ [0, h] reaches

its maximal positive value M
r

at the point (t0, z0) 2 ⇧\@⇧. Then the classical results

[43, Chapter 3, Theorems 5,7] show that �(t, z) ⌘ M
r

> 0 in ⇧, a contradiction.

Hence, the usual maximum principle holds for each ⇧
r

, r � r0, so that we can

appeal to the proof of the Phragmèn-Lindelöf principle from [43] (see Theorem 10 in

Chapter 3 of this book), in order to conclude that �(t, z)  0 for all t 2 [0, h], z 2 R.

But then we can again repeat the above argument on the intervals [h, 2h], [2h, 3h], . . .

establishing that the inequality w�(t, z)  w(t, z)  w+(t, z), z 2 R, holds for all

t � �h.

To the best of our knowledge, the following important property of super- (sub-)

solutions was first used by Aronson and Weinberger in [2]. See also [49, Proposition

2.9].
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Corollary 9. Assume (H) and let w+(z) be an exponentially bounded super-solution

for equation (3.1). Consider the solution w+(t, z), t � 0, of the initial value problem

w+(s, z) = w+(z) for (3.1). Then w+(t1, z) � w+(t2, z) for each t1  t2, z 2 R. A

similar result is valid in the case of exponentially bounded sub-solutions w�(z) which

do not depend on t: if w�(t, z) solves the initial value problem w�(s, z) = w�(z) for

(3.1), then w�(t1, z)  w�(t2, z) for each t1  t2, z 2 R.

Proof. We prove only the first statement of the corollary (for super-solution w+), the

case of sub-solution w�(z) being completely analogous.

By Lemma 1, w+(t, z)  w+(z) for each t � 0. Hence, fixing some positive l

and considering the initial value problems u(s, z) = w+(s + l, z), v(s, z) = w+(z),

s 2 [�h, 0], z 2 R, for equation (3.1), we find that u(t, z) = w+(t+ l, z)  v(t, z) =

w+(t, z), t > 0, z 2 R.

3.2 Proof of Theorem I.5 and Corollary 1

In this section, we take some c � c# and assume the conditions of Theorem I.5.

This result will follow from Theorem 1 proved below. Everywhere in the section

we denote by w(t, z) solution of equation (3.1) satisfying the initial value condition

w(s, z) = w0(s, z), (s, z) 2 ⇧0.

It is easy to see that, given q⇤ > 0, q⇤ 2 (0,), there are �⇤ < �0, �⇤ > 0 such that

g(u)� g(u� qe�h)  q(1� 2�),

(u, q, �) 2 ⇧� = [� �⇤,]⇥ [0, q⇤]⇥ [0, �⇤];
(3.5)

g(u)� g(u+ qe�h) � �q(1� 2�),

(u, q, �) 2 ⇧+ = [� �⇤,]⇥ [0, q⇤]⇥ [0, �⇤].
(3.6)
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Indeed, it su�ces to note that the continuous functions

G�(u, q, �) :=

8
><

>:

1 + (g(u� e�hq)� g(u))/q, (u, q, �) 2 ⇧�;

1� e�hg0(u), u 2 [� �⇤,], q = 0, � 2 [0, �⇤],

G+(u, q, �) :=

8
><

>:

1� (g(u+ e�hq)� g(u))/q, (u, q, �) 2 ⇧+;

1� e�hg0(u), u 2 [� �⇤,], q = 0, � 2 [0, �⇤],

are positive on ⇧± provided that �⇤, �⇤ are su�ciently small.

From now on, we fix � 2 [0, �⇤), � 2 (0, �⇤) such that (3.5) and (3.6) hold and

�� + c�� �2 + 1� g0(0)e�he��ch � 0.

It is easy to see that � = 0 for � = �1(c) while � can be chosen positive if � 2

(�1(c),�2(c)). Consider b determined by the equation �(b� ch) = � �⇤/2. Without

loss of generality we can assume that b > 0.

Lemma 2. Suppose that L
g

= g0(0) in (H). Let � � 0 be as defined above. If either

c > c# with � 2 (�1(c),�2(c)) or c � c# with � = �1(c), then

w0(s, z)  �(z) + q⌘
�

(z � b), z 2 R, s 2 [�h, 0],

with q 2 (0, q⇤] implies

w(t, z)  �(z) + qe��t⌘
�

(z � b), z 2 R, t � �h.

Similarly, the inequality

�(z)� q⌘
�

(z � b)  w0(s, z), z 2 R, s 2 [�h, 0],

with some 0 < q  q⇤ implies

�(z)� qe��t⌘
�

(z � b)  w(t, z), z 2 R, t � �h.

Each conclusion of the lemma holds without any upper restriction on the size of q if

we replace ⌘
�

(z � b) with ⇠(z,�) = exp (�z).
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Proof. Set w±(t, z) = �(z)± qe��t⌘
�

(z � b). Then, for t > 0 and z 2 R \ {b}, after a

direct calculation we find that

Nw±(t, z) = ±qe��t[��⌘
�

(z � b) + c⌘0
�

(z � b)� ⌘00
�

(z � b) + ⌘
�

(z � b)]+

g(�(z � ch))� g(w±(t� h, z � ch)).

It is clear that for z < b (if we are considering ⌘
�

(z � b)) as well as for all z 2 R (if

we are using ⇠(z,�) instead of ⌘
�

(z � b)), it holds that

±Nw±(t, z) � qe��te�(z�b)[�� + c�� �2 + 1� g0(0)e�he��ch] � 0.

If z > b and q 2 (0, q⇤], then (3.6) implies

Nw+(t, z) � qe��t[�� + 1� (1� 2�)] = �qe��t > 0.

Similarly, if z > b and q 2 (0, q⇤], we obtain from (3.5) that

�Nw�(t, z) � qe��t[�� + 1� (1� 2�)] = �qe��t > 0.

Next, since

±
✓
@w±(t, b+)

@z
� @w±(t, b�)

@z

◆
= �q�e��t < 0,

we conclude that w±(t, z) is a pair of super- and sub-solutions for equation (3.1).

Finally, an application of Lemma 1 completes the proof.

Lemma 2 implies that front solutions of equation (1.1) are locally stable:

Corollary 10. Let the triple (c,�, �) 2 [c#,+1)⇥[�1(c),�2(c))⇥R+ be as in Lemma

2 and suppose that

sup
s2[�h,0]

|�(·)� w0(s, ·)|� < ⇢e��b

for some ⇢ < . Then

|�(·)� w(t, ·)|
�

< ⇢e��t, t � 0.
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Proof. The statement of the corollary is an immediate consequence of Lemma 2,

since, due to our assumptions, for all z 2 R, s 2 [�h, 0],

�(z)� ⇢⌘
�

(z � b)  �(z)� ⇢e��b⌘
�

(z)  w0(s, z) 

�(z) + ⇢e��b⌘
�

(z)  �(z) + ⇢⌘
�

(z � b).

We note that assumption (IC10) allows consideration of initial functions w0 which

can be equal to 0 on compact subsets of ⇧0. This fact complicates the construction

of adequate sub-solutions. In the next assertion we show that, without restricting

generality, the positivity of w0 can assumed in our proofs.

Corollary 11. Suppose that L
g

= g0(0) in (H) and that w0(s, z), (s, z) 2 ⇧0, satisfies

the assumptions (IC1’), (IC2’). Then the following holds.

A. If c � c# and

(3.7) lim
z!�1

w0(s, z)/�(z) = 1,

uniformly on s 2 [�h, 0], then w(2h + s, z) > 0, (s, z) 2 ⇧0, also satisfies the

assumptions (IC1), (IC2) and lim
z!�1 w(t, z)/�(z) = 1 uniformly with respect

to t 2 [0,+1).

B. Suppose that c > c#, � 2 (�1(c),�2(c)) together with

(3.8) q0 := sup
s2[�h,0]

|�(·)� w0(s, ·)|� < 1.

Then w(2h+ s, z) > 0, (s, z) 2 ⇧0, also satisfies the assumptions (IC1), (IC2)

and, for each t � 0,

sup
s2[�h,0]

|�(·)� w(s+ t, ·)|
�

< 1.
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Proof. The positivity of w(2h+s, z) for (s, z) 2 ⇧0, is obvious. Next, the fulfilment of

separation condition (IC20) for w(2h+s, z) can be proved similarly to [51, Proposition

1.2] (alternatively, the reader can use Duhamel’s formula). Next, since w ⌘ 0 and

w ⌘ max{, |w0|1} are, respectively, sub- and super-solutions of equation (3.1), the

condition (IC10) is also fulfilled. Finally, the proofs of the persistence of properties

(3.7) and (3.8) are given below.

A. Set �
c

= �1 if c = c# or fix some �
c

2 (�1(c),�2(c)) if c > c#. It follows from

(3.7) that for every s 2 R, it holds

lim
z!�1

w0(s, z)/�(z + s) = e�1s

uniformly on s 2 [�h, 0]. Therefore, for each small � > 0 there exists a large

q = q(�, w0) > 0 such that

(3.9) �(z � �)� q⇠(z,�
c

)  w0(s, z)  �(z + �) + q⇠(z,�
c

), (s, z) 2 ⇧0.

Then Lemma 2 assures that

�(z � �)� q⇠(z,�
c

)  w(t, z)  �(z + �) + q⇠(z,�
c

), t � 0, z 2 R,

so that, for all t � 0 and z 2 R, it holds

l(z, �) :=
�(z � �)

�(z)
�1� q

⇠(z,�
c

)

�(z)
 w(t, z)

�(z)
�1  r(z, �) :=

�(z + �)

�(z)
�1+ q

⇠(z,�
c

)

�(z)
.

Now, since

lim
z!�1

l(z, �) = e��1� � 1, lim
z!�1

r(z, �) = e�1� � 1,

for each ✏ > 0 we can indicate � = �(✏) and z
✏

such that

�✏  w(t, z)

�(z)
� 1  ✏ for all t � 0 and z  z

✏

.

B. We have that

�(z)� q0⇠(z,�)  w0(s, z)  �(z) + q0⇠(z,�), (s, z) 2 ⇧0,
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so that the last conclusion of the corollary follows from Lemma 2.

Remark 5. Corollary 11A shows that asymptotic relation (3.7) is a time invariant of

w(t, z). In the next section, Lemma 4 gives an amplified version of this result.

Theorem 1. In addition to (H), suppose that L
g

= g0(0). If the initial function w0

satisfies the assumptions (IC1’), (IC2’), then the following holds.

A. Take c � c# and assume (3.7). Then

|w(t, ·)/�(·)� 1|0 = o(1), t ! +1.

B. If c > c# and � 2 (�1(c),�2(c)) then (3.8) implies

|�(·)� w(t, ·)|
�

 Ce��t, t � 0,

for some positive C, � (in fact, � > 0 can be chosen as in Lemma 2).

Proof. In virtue of Corollary 11, without loss of generality, we can assume that

w0(s, z) > 0 on ⇧0.

A. As in the proof of Corollary 11A, set �
c

= �1 if c = c# or take some �
c

2

(�1(c),�2(c)) if c > c#. We know from Lemma 2 that the functions �(z)± q⇠(z,�
c

)

constitute a pair of super- and sub-solutions for equation (3.1) for each positive q.

The main drawback of these solutions is their unboundedness. Hence, first we show

how to correct this deficiency of �(z)± q⇠(z,�
c

).

So, fix � > 0 and take q = q(�, w0) > 0 large enough to meet (3.9). Let (�1, p)

be the maximal interval where the function �(z � �) � q⇠(z,�
c

) is positive. Then,

for su�ciently small ✏ 2 (0,), the equation

�(z � �)� q⇠(z,�
c

) = ✏
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has exactly two solutions z1(✏) < z2(✏) on (�1, p). It holds that z1(0+) = �1,

z2(0+) = p and therefore we can find ✏ > 0 such that z2(✏)� z1(✏) > ch and

inf{w0(s, z) : z � z1(✏), s 2 [�h, 0]} > ✏.

It is easy to see that the functions

w�(z) :=

8
><

>:

�(z � �)� q⇠(z,�
c

), z  z2(✏),

✏, z2(✏)  z,

and

w+(z) := min{+ |w0|1,�(z + �) + q⇠(z,�
c

)}

satisfy

w�(z)  w0(s, z)  w+(z), (s, z) 2 ⇧0,

and that they are, respectively, a sub-solution and a super-solution for equation (3.1).

Thus Corollary 9 implies that

(3.10) w�(z)  w�(t, z)  w(t, z)  w+(t, z)  w+(z),

where w±(t, z) denote the solutions of (3.1) satisfying the initial conditions w±(s, z) =

w±(z), z 2 R, s 2 [�h, 0]. From Corollary 9 we also obtain that w±(t, z) converge

(uniformly on compact subsets of R) to some functions �±(z) such that

w�(z)  ��(z)  �+(z)  w+(z).

It is well known (see e.g. [51, Lemma 2.8]) that �± satisfy the profile equation

(3.2). Since �± are positive and bounded, �(�1) = 0 and lim inf
z!+1 �(z) > 0, we

conclude from [55, Proposition 2 and Theorem 1.2] that �±(z) = �(z ± �±), z 2 R

for some ��  ��  �+  �.
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Furthermore, we claim that

w⇤ := lim sup
t!+1

|w+(t, ·)|1  , w⇤ := lim
(T,Z)!+1

inf
z�Z,t�T

w�(t, z) = .

Clearly, w⇤  w⇤. To prove that w⇤  , it su�ces to observe that the homogeneous

solution w
g

(t), t � 0, of equation (3.1) defined as the solution of the initial value

problem

w0(t) = �w(t) + g(w(t� ch)), w
g

(s) = |w0|1 + , s 2 [�h, 0],

dominates w+ (i.e. w+(t, z)  w
g

(t) for all z 2 R, t � �h) in view of Lemma 1 and

converges to .

Next, suppose that w⇤ <  and take Z, T so large and �1 > "1 > 0 so small that

(i) w�(t, z) > w⇤ � �1 for all z � Z � ch, t � T � h;

(ii) w�(t, z) > � "1 for all t � T � h, and z 2 [Z � ch, Z];

(iii) homogeneous solution w
h

(t), t � 0, of equation (3.1) defined as the solution

of the initial value problem

w0(t) = �w(t) + g(w(t� ch)), w
h

(s) = w⇤ � �1, s 2 [�h, 0],

satisfies the inequalities

w
h

(t)  (w⇤ + )/2, t 2 [�h, a1],

(w⇤ + )/2  w
h

(t  w
h

(a2) = � "1, t 2 [a1, a2],

for su�ciently large a2 > a1+h > h (observe here that from [?, Corollary 2.2, p. 82]

we know that w
h

(t) converges monotonically to ). Therefore, for each T1 � T and

all t 2 (T1, T1 + h], z � Z, the function �(t, z) = w
h

(t � T1) � w�(t, z) satisfies the

inequalities

|�(t, z)|  , �
zz

(t, z)� �
t

(t, z)� c�
z

(t, z)� �(t, z) =

g(w�(t� h, z � ch))� g(w
h

(t� T1 � h)) > 0.
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In addition, we have that

�(T1, z) < 0, z � Z, �(t, Z) < 0, t 2 [T1, T1 + a2].

In consequence, by the Phragmèn-Lindelöf principle,

�(t, z) = w
h

(t� T1)� w�(t, z)  0, for all t 2 [T1, T1 + h], z � Z.

It is clear that, using step by step integration method, we can repeat the above

procedure till the maximal moment t⇤ before which the inequality g(w�(t � h, z �

ch)) � g(w
h

(t� T1 � h)) for z � Z is preserved. Therefore

w
h

(t� T1)  w�(t, z) for all t 2 [T1, T1 + a2], z � Z,

so that

(w⇤ + )/2  w�(t, z) for all t 2 [T1 + a1, T1 + a2], z � Z.

However, since T1 � T is an arbitrarily chosen number, we conclude that w⇤ � (w⇤+

)/2, contradicting to our initial assumption that w⇤ < . Hence w±(t, z) ! �±(z)

as t ! +1 uniformly on R. In virtue of (3.10), we obtain

lim sup
t!+1

|w(t, ·)/�(·)� 1|0  e�1� � 1,

for each small �. This completes the proof of the first part of Theorem 1.

B. We deduce from (3.8) that

�(z)� q0e
�b⇠(z � b,�)  w0(s, z)  �(z) + q0e

�b⇠(z � b,�), z 2 R, s 2 [�h, 0].

As a consequence, Lemma 2 guarantees that, for some positive � and all z 2 R,

t � �h,

�(z)� q0e
�be��t⇠(z � b,�)  w(t, z)  �(z) + q0e

�be��t⇠(z � b,�).
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From the part A of this theorem, we also know that lim
t!+1 w(t, z) = �(z) uniformly

on R. Therefore there exist a large T1 > 0 and positive q2 < min{q⇤, q⇤} such that,

for all z 2 R, t � T1 � h,

�(z)� q2⌘�(z � b)  w(t, z)  �(z) + q2⌘�(z � b).

Again applying Lemma 2, we obtain that

�(z)� q2e
��(t�T1)⌘

�

(z � b)  w(t, z)  �(z) + q2e
��(t�T1)⌘

�

(z � b) t > T1, z 2 R.

Thus

|�(z)� w(t, z)|
�

 (q2e
�T1)e��t, t � T1,

that proves the second statement of the theorem.

3.3 Stability lemma and invariance of the leading asymptotic term

In this section, we are presenting two auxiliary results which are necessary to

prove Theorem I.4. First we demonstrate a quite general local stability lemma. Here

�⇤, b > 0 are as at the beginning of Section 3.2.

Lemma 3. Assume that c > c⇤ and write, for short, ⌘1(z) = min{1, e�1(c)z} instead

of ⌘
�1(z). Then

w±(t, z) := �(z ± ✏±(t))± qe��t⌘1(z), q 2 (0,min{q⇤, q⇤}],

are super- and sub-solutions for appropriately chosen functions

✏+(t) :=
↵q

�
(e�h � e��t) > 0, ✏�(t) := �↵q

�
e��t < 0, t > �h.

The parameters ↵, � > 0 are fixed later in the proof and depend only on g,�, c, h,�1.
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Proof. Set z⇤ = 0 and observe that the smoothness conditions and the second in-

equality in (3.3) are satisfied in view of

±
✓
@w±(t, 0+)

@z
� @w±(t, 0�)

@z

◆
= �q�1(c)e

��t < 0.

In order to establish the first inequality of (3.3), we proceed with the following direct

calculation:

±Nw±(t, z) := ✏0±(t)�
0(z ± ✏±(t))� �qe��t⌘1(z)⌥ �00(z ± ✏±(t))� qe��t⌘001(z)

±c�0(z ± ✏±(t)) + cqe��t⌘01(z)± �(z ± ✏±(t)) + qe��t⌘1(z)⌥ g(w±(t� h, z � ch)) �

↵qe��t�0(z ± ✏±(t))� �qe��t⌘1(z) + cqe��t⌘01(z) + qe��t⌘1(z)� qe��t⌘001(z)

±
�
g(�(z � ch± ✏±(t)))� g(�(z � ch± ✏±(t))± qe��(t�h)⌘1(z � ch))

�
, z 6= 0.

Here we are using the fact that g,�, ✏± are strictly increasing functions.

From now on, we will fix d and ↵ defined by

(3.11) d := inf
zb

�0(z)/⌘1(z) > 0 and ↵ := d�1e�hL
g

.

Note that ↵, d, � depend only on g,�, c, h,�.

We claim that ±Nw±(t, z) � 0 for all z 6= 0, t � 0 and q 2 R+.

Indeed, suppose first that z ± ✏±(t)  b. Then, chosing positive parameter � <

g0(0)e��1ch, we find that

0 � ± (g(�(z � ch± ✏±(t)))� g(�(z � ch± ✏±(t)))± qe��(t�h)⌘1(z � ch)) �

�L
g

qe��(t�h)⌘1(z � ch), ±Nw±(t, z) �

qe��t

�
⌘1(z ± ✏±(t))d↵ + ([1� �]⌘1(z) + c⌘01(z)� ⌘001(z)� e�hL

g

⌘1(z � ch))
 

� qe��t

�
⌘1(z ± ✏±(t))d↵� e�hL

g

⌘1(z � ch)
�
> 0.
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Similarly, if z ± ✏±(t) � b, then invoking (3.6) we obtain, for all t � 0, that

0 � ± (g(�(z � ch± ✏±(t)))� g(�(z � ch± ✏±(t)))± qe��(t�h)⌘1(z � ch)) �

�qe��t⌘1(z � ch)(1� 2�), ±Nw±(t, z) �

qe��t ([1� �]⌘1(z) + c⌘01(z)� ⌘001(z)� (1� 2�)⌘1(z � ch)) �

qe��t

8
><

>:

e�1z[1� � + c�1 � �21 � e��1ch(1� 2�)], z < 0

�, z > 0

9
>=

>;
> 0.

The proof of Lemma 3 is completed.

Corollary 12. Let � > 0 be as in Lemma 3 and ↵ be as in (3.11). If c > c⇤ and

non-negative initial function w0 satisfies

�(z)� q�⌘1(z)  w0(s, z)  �(z) + q+⌘1(z), z 2 R, s 2 [�h, 0],

for some 0 < q± < &0 := min{�,min{q⇤, q⇤} exp
�
��1↵eh

�
}, then there exists positive

number C = C(g,�) such that

�(z � Cq�)� Cq�e
��t⌘1(z)  w(t, z)  �(z + Cq+) + Cq+e

��t⌘1(z), z 2 R, t � �h.

Proof. The right hand side inequality is a direct consequence of Lemmas 1 and 3 in

view of the estimations

w0(s, z)  �(z) + q+⌘1(z)  �(z + ✏+(s)) + q+e
��s⌘1(z), (z, s) 2 ⇧0.

Since ✏+(t) increases on R, this proves conclusion of the lemma with C = C1 :=

✏(1) = ↵e�h/�.

In order to prove the left hand side inequality, observe that

w0(s, z � ✏�(�h)) � �(z � ✏�(s))� q�e
��1✏�(�h)e��s⌘1(z) �

�(z � ✏�(s))� 0.5e�h�e��s⌘1(z), (z, s) 2 ⇧0.
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This implies that, for all t � �h, z 2 R, it holds

w(t, z) � �(z � ✏+(t))� q�e
�2�1✏�(�h)e��t⌘1(z) �

�(z � C1q�)� C2q�e
��t⌘1(z), C2 := exp

�
2�1↵e

h

�
.

Setting C = max{C1, C2}, we complete the proof of Corollary 12.

Corollary 13. For every ✏ > 0 there exists &(✏) > 0 such that

|�(·)� w(s, ·)|
�1 < &(✏), s 2 [�h, 0],

implies that |�(·)� w(t, ·)|
�1 < ✏ for all t � 0.

Proof. It su�ces to take

&(✏) = min

⇢
&0,

✏

C(1 + e�1C&0 sup
z2R [�0(z)/⌘1(z)])

�

and to apply Corollary 12.

The second main result of this section assures the invariance of the main asymp-

totic term at �1 of solutions with ‘good’ initial data.

Lemma 4. Suppose that the birth function g is bounded and that there exists g0(0) >

1. If the initial fragment u(s, z) of a bounded solution u(t, z) to equation (1.1) is such

that, for some positive eigenvalue �
j

(c), j = 1, 2, it holds that u(s, x� cs)e��j(c)x !

1, x ! �1, for each s 2 [�h, 0]. Then also it holds that u(t, x � ct)e��j(c)x !

1, x ! �1, for each t � 0.

Proof. Due to a step by step argument, it is su�cient to consider the situations when

t 2 [0, h]. Set U(t, x) := etu(t, x), then U(s, x� cs)e��j(c)x ! es, x ! �1, and

U
t

(t, x) = U
xx

(t, x) + etg(e�t+hU(t� h, x)), t > 0, x 2 R.
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Hence, by Duhamel’s formula (see e.g. [15, Theorem 12, p. 25]),

U(t, x) = �(t, ·) ⇤ U(0, ·) +
Z

t

0

�(t� s, ·) ⇤ esg(e�s+hU(s� h, ·))ds,

where �(t, x) =
1

2
p
⇡t

e�x

2
/4t, t > 0, x 2 R,

is the fundamental solution and �(t, ·) ⇤ U(s, ·) denotes the convolution on R with

respect to the missing space variable.

By Lebesgue’s dominated convergence theorem, for each s 2 [�h, 0], t > 0,

lim
x!�1

e��jx�(t, ·) ⇤ U(s, ·) =

1

2
p
t⇡

Z

R
e�

1
4t [(y+2t�j)2�4t2�2

j ] lim
x!�1

e��j(x�y)U(s, x� y)dy = e�
2
j t+�jcs+s.

Consequently, for t 2 (0, h], we have that

lim
x!�1

e��jxU(t, x) = e�
2
j t +

Z
t

0

lim
x!�1

e��jx�(t� s, ·) ⇤ g(e�s+hw(s� h, ·))esds

= e�
2
t + g0(0)e��che�

2
t

Z
t

0

e(��

2+�c+1)sds = e(1+�c)t.

Finally, we obtain the relation lim
x!�1 e��jxu(t, x) = e�jct for each t 2 (0, h] which

completes the proof of the lemma.

Remark 6. An obvious modification of the above proof yields the following assertion:

Assume that the birth function g : R+ ! R+, g(0) = 0, is bounded and Lipschitz

continuous. Suppose also that the initial fragments u
k

(s, z), k = 1, 2, of bounded

solutions u
k

(t, z) to equation (1.1) satisfy, for some positive µ, the relation

(u1 � u2)(s, x� cs)e�µx ! 0, x ! �1, s 2 [�h, 0].

Then (u1 � u2)(t, x� ct)e�µx ! 0, x ! �1, for each t � 0.

This result provides a short and elementary justification for one of delicate mo-

ments in getting a priori estimates for a weighted energy method developed by Mei
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et al. [37, 38, 39, 40]. Indeed, an important initial fragment of the derivation of

these estimates includes elimination of the boundary term

(u� �)(t, x� ct)e�µx|
x=�1 = (w(t, x)� �(x))e�µxeµct|

x=�1 = 0.

For instance, see [29, p. 855], [39, formulas (3.9)-(3.11)] or [28, p. 1067].

3.4 Proof of Theorem I.4

We will need the following result

Lemma 5. Assume that the initial function w0(s, z) � 0 is uniformly bounded on

the strip [�h, 0] ⇥ R (say, by some K > 0) and satisfies the hypothesis (IC3) and,

for some c > c⇤, it holds

lim
z!�1

w0(s, z)e
��1(c)z = 1

uniformly on s 2 [�h, 0]. Then for each & > 0 there exists L and  (z) = (1 + & +

o(1))e�1(c)z, z ! �1, such that  0(z) > 0 for z 2 R,  (L) = K,  (+1) = +1,

w0(s, z) <  (z), z  L, s 2 [�h, 0], and

(3.12)  00(z)� c 0(z)�  (z) + g( (z � ch))  0, z  L.

Proof. Since c > c⇤, the linearisation of equation (3.12) about 0 has exactly two real

simple eigenvalues �1(c) < �2(c). In particular, the linearised equation has a positive

solution (�(t),�0(t)) = (1,�2(c)))e�2(c)t. Moreover, the eigenvalue �2 = �2(c) is

dominant (i.e. <�
j

(c) < <�2 for all other eigenvalues �j(c), j 6= 2). As a consequence,

equation (3.12) has a solution  2(t) with the following asymptotic behaviour at �1:

( 2(t), 
0
2(t)) = (1,�2))e

�2t +O(e(�2+✏)t), t ! �1, ✏ > 0,

(see e.g. [12, Theorem 2.1] for more detail).
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In this way, there exists a maximal open non-empty interval (0, T ), T 2 R[{+1},

such that  2(t) > 0,  0
2(t) > 0 for all t 2 (0, T ). We claim that  2(T ) >  and

T = +1. First, it should be noted that  2(T ) 6=  since otherwise we obtain a) if

T is finite then  2(T ) =  > g( 2(T � ch)),  0
2(T ) = 0,  00

2(T )  0, contradicting

to (3.12); b) if T = +1 then  2(t) is a monotone heteroclinic connection between

0 and , di↵erent from  1. This contradicts to the uniqueness of the wavefront

 1 established in [55]. Next, suppose that  2(T ) < 1 and consider the di↵erence

✓
a

(t) =  1(t)� 2(t+a), t 2 R, for some fixed a 2 R. Here  1(t) denotes the unique

monotone wavefront to (3.12) normalised by the condition  1(t)e��1t = 1 + o(1),

t ! +1. Since  1 is a strictly monotone heteroclinic connection between 0 and ,

there exists a unique S 2 R such that  1(S) =  2(T ). Now, taking into account the

inequality �1 < �2, we obtain that, for each fixed a, the function ✓
a

(t) is positive

in some maximal interval (�1, �(a)). If we choose b = T � S then ✓
b

(S) = 0,

✓0
b

(S) > 0 and therefore �(b) = �(T � S) < S, ✓
b

(�(b)) = 0. On the other hand,

✓
a1(t) > 0, t 2 [�(b), S], for some large negative a1  b. Note also that ✓

a

(t) >

✓
b

(t) > 0, t  �(b) if a < b. In consequence, there exists d 2 (a1, b] such that

✓
d

(�(d)) = ✓0
d

(�(d)) = 0  ✓00
d

(�(d)). However, this yields the following contradiction:

0 = ✓00
d

(�(d))� c✓0
d

(�(d))� ✓
d

(�(d)) + g( 1(�(d)� ch))� g( 2(d+ �(d)� ch)) > 0

because ✓
d

(�(d) � ch) =  1(�(d) � ch) �  2(d + �(d) � ch) > 0 and g is strictly

increasing.

Finally, if T < +1 and  2(T ) > , then g( 1(T � ch)) < g( 1(T )) <  1(T ).

Since, in addition,  00
2(T )   0(0) = 0, we obtain the following contradiction:

0 =  00
1(T )� c 0

1(T )�  1(T ) + g( 1(T � ch)) < 0.

Next, we consider, for ✏ 2 [0, 1] and µ 2 (�1(c),�2(c)), µ < (1 + ↵)�1(c), the
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function

 (t, ✏) =  2(t) + ✏(e�1t + eµt).

It is clear that  (t, ✏)  Ce�1t, t � 0, for some C > 1 which does not depend on

✏ 2 [0, 1].

Set �(z) = z2 � cz � 1 + g0(0)e�zch, we have that

D :=  00(t, ✏)� c 0(t, ✏)�  (t, ✏) + g( (t� ch, ✏)) =

✏�(µ)eµt + g( (t� ch, ✏))� g( (t� ch, 0))� g0(0)✏(e�1(t�ch) + eµ(t�ch)t).

Let T0 < 0 be such that  (t� ch, ✏)  �0 :=  (T0, 1) for all t  T0, ✏ 2 [0, 1]. Then,

for some P (t, ✏) 2 [ (t� ch, 0), (t� ch, ✏)], it holds that

|g( (t� ch, ✏))� g( (t� ch, 0))� g0(0)✏(e�1(t�ch) + eµ(t�ch)t)| =

|g0(P (t, ✏))� g0(0)|✏(e�1(t�ch) + eµ(t�ch)t) 

✏( (t� ch, ✏))↵|(e�1(t�ch) + eµ(t�ch)t)  2C✏e(1+↵)�1t.

Thus, for a su�ciently large negative T1 < T0,

D  ✏eµt(�(µ) + 2Ce[(1+↵)�1�µ]t) < 0

for all ✏ 2 (0, 1], t  T1. As a consequence, if we define  
✏

(t) by

 
✏

(t) :=

8
><

>:

 (t, ✏), 0  t  T1,

y(t, ✏), T1  t,

where y = y(t, ✏), t � T1, solves the initial value problem y(s, ✏) =  (s, ✏), s 2 [T1�

h, T1], y0(T1, ✏) =  0(T1, ✏) for equation (3.12), then  
✏

2 C1(R) \ C2(R \ {T1}) and

D 
✏

(t)  0, t 6= T1. Define T
K

as the unique solution of the equation  2(TK

) = K,

then due to the smooth dependence on the initial data,

(y(t, ✏), y0(t, ✏)) ! ( 2(t), 
0
2(t)), ✏! 0+,
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uniformly for t 2 [T0, TK

].

Finally, due to the assumptions imposed on w0, there exists T2 < T1 such that

w0(t, s)  (1 + &)e�1(c)z <  2(T1), t  T2, s 2 [�h, 0].

For ✏ 2 (0, 1], set p
✏

= ��1
1 (c) ln[(1 + &)/✏] and  ̃(t) :=  

✏

(t + p
✏

). Obviously,

 ̃(t) > (1 + &)e�1(c)z, t  T1 � p
✏

,  ̃(t) >  2(T1), t 2 [T1 � p
✏

, T
K

� p
✏

] and  ̃(t) =

(1 + & + o(1))e�1(c)z, t ! +1. Since  ̃(T
K

� p
✏

) = y(T
K

, ✏) > K, we obtain that

w0(s, z)   ̃(z), s 2 [�h, 0].

whenever T
K

< T2 + p
✏

.

Next, for the solution w(t, z) of the initial value problem w(s, z) = w0(s, z),

(s, z) 2 [�h, 0]⇥ R, we define its !�limit set by

⌦(w0) = {w⇤ 2 C1,2([�h, 0]⇥ R) : there exists some t
k

! +1 such that

lim
k!1

w(t
k

+ s, z) = w⇤(s, z) uniformly on compact subsets of [�h, 0]⇥ R}.

Note that the set ⌦(w0) is non-empty, compact and invariant with respect to the

flow generated by equation (3.1), e.g. see [51, Lemma 2.8].

Theorem 2. Assume that the initial function w0(s, z) � 0 satisfies the hypotheses

(IC10), (IC20) and, for some A > 0 and c > c⇤, it holds

lim
z!�1

w0(s, z)e
��1(c)z = A

uniformly on s 2 [�h, 0]. Choose a shifted copy of the wavefront profile � normalised

by the boundary condition lim
z!�1 e��1(c)z�(z) = 1. Then

lim
t!1

|�(·+ a)� w(t, ·)|
�1 = 0,

where a = (�1(c))�1 lnA.
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Proof. Without loss of generality, we may assume that A = 1 (otherwise we can take

a shifted copy of w0). For each & > 0 there exist L and  satisfying all conclusions

of Lemma 5 and such that w0(s, z)   +(z), (s, z) 2 [�h, 0]⇥ R, where

 +(z) :=

8
><

>:

 (z), 0  z  L,

+ |w0|1, L  z.

Since �K + g(K) < 0 and  0
+(L�) > 0 =  0

+(L+), we conclude that  +(z) is a

super-solution for equation (3.1). In view of Lemma 1, we also find that

w(t, z)   +(z), (t, z) 2 R+ ⇥ R.

On the other hand, it is easy to see (e.g., cf. [57, p. 478]) that there exists a

monotone C1-function ĝ : R+ ! R+ satisfying the hypothesis (H) and such that

g0(0) = ĝ0(0) � ĝ0(x), g(x) � ĝ(x) for all x 2 [0,]. Let ŵ(t, z), t > 0, z 2 R, solve

the initial value problem

(3.13) w
t

(t, z) = w
zz

(t, z)� cw
z

(t, z)� w(t, z) + ĝ(w(t� h, z � ch)),

w(s, z) = w0(s, z), s 2 [�h, 0], z 2 R,

then clearly w(t, z) is a super-solution for (3.13) and therefore Lemma 1 implies

that ŵ(t, z)  w(t, z) for all (t, z) 2 R+ ⇥ R. Furthermore, Theorem 1A assures

that lim
t!+1 |ŵ(t, ·) � �̂

c

(·)|
�1 = 0 for the wavefront �̂ of equation (3.13) which is

normalised as lim
z!�1 e��1(c)z�̂(z) = 1.

Next, let w
u

(t, z), t > 0, z 2 R, denote the solution of the initial value problem

w
u

(s, z) =  +(z), s 2 [�h, 0], z 2 R, for equation (3.1). Then Corollary 9 implies

that

(3.14) ŵ(t, z)  w(t, z)  w
u

(t, z), (t, z) 2 R+ ⇥ R.
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Therefore it holds, for some a1 2 [0,��1(c) ln(1 + &)] and for all w
l

2 ⌦(w0), that

(3.15) �̂(z)  w
l

(s, z)  �(z + a1), z 2 R, s 2 [�h, 0],

where

1 = lim
z!�1

�̂(z)e��1z  lim
z!�1

�(z + a1)e
��1z  lim

z!�1
 +(z)e

��1z = 1 + &.

Next, since �̂(z) is a sub-solution for equation (3.1) we find analogously that, for

some a0 2 [0, a1] and for all w
ll

2 ⌦(w
l

) ⇢ ⌦(w0),

�(z + a0)  w
ll

(s, z)  �(z + a1), z 2 R, s 2 [�h, 0],

where

1  lim
z!�1

�(z + a0)e
��1z  lim

z!�1
�(z + a1)e

��1z  1 + &.

Since the latter relation holds for every & > 0, we conclude that actually a0 = 0 and

{�(·)} = ⌦(w
l

) ⇢ ⌦(w0). Furthermore, as a consequence of (3.15), lim
z!�1 e��zw

l

(s, z) =

1 uniformly in s 2 [�h, 0].

Hence, for each & > 0 there are Z1(&), T
&

> 0 such that, for all t � T
&

, z  Z1(&),

it holds

(3.16)
�2&  e��1z(ŵ(t, z)� �̂(z))� e��1z(�(z)� �̂(z)) 

e��1z(w(t, z)� �(z))  e��1z( +(z)� �(z)) < 2&.

In addition, {�(·)} 2 ⌦(w0) implies that there exits a sequence t
n

! +1 that

w(t
n

+ s, z) ! �(z) on compact subsets of ⇧0. This fact, together with (3.14) and

(3.16), implies that

sup
s2[�h,0]

|�(·)� w(t
n

+ s, ·)|
�1  2&

for all su�ciently large n. Finally, an application of Corollary 13 completes the

proof.
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Finally, we will apply Theorem I.4 in order to analyse behaviour of solutions whose

initial data satisfy the hypotheses (IC10), (IC20) and (1.11):

Proof. of Corollary 1:

Case I: � > �⇤. The statement of the corollary is an immediate consequence of [51,

Theorem 1.4].

Case II: � < �⇤. Clearly, we have that � = �1(c(�)). Set A� = min
s2[�h,0] A(s)e�µs.

Then for each A1 < A�, the initial datum

w1(s, x) := min{A1e
�(x+cs), w0(s, x)}

meets all the conditions of Theorem 1. Consequently, for each � > 0 there exists T
�

>

0 such that solution u1(t, x) of the initial value problem u1(s, x) = w1(s, x), (s, x) 2

⇧0, to equation (1.1) satisfies

�(x+ ct+ a1)� �⌘
�

(x+ ct)  u1(t, x), for all x 2 R, t > T
�

with a1 = ��1 log(A1). Now, the functions � and ⌘
�

are equivalent at �1 so that,

to each given ✏ > 0 we can associate A1 close to A� and � > 0 close to 0 such that

(1� ✏)�(x+ ct+ a�)  u�(t, x)  u(t, x), x 2 R, t > T
�

.

The upper estimation can be established in a similar way by comparing u(t, x) with

solution u2(t, x) of (1.1) satisfying the initial condition

w2(s, x) = max{A2e
�(x+cs), w0(s, x)}, (s, x) 2 ⇧0,

with A2 > A+ = max
s2[�h,0] A(s)e�µs.

Case III: � = �⇤. Inequalities (1.12) can be proved in the same manner as in Case

II, if we take the initial functions

w̃1(s, x) := min{A1e
M(x+cs), w0(s, x)}, w̃2(s, x) = max{A2e

⌫(x+cs), w0(s, x)},
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where ⌫ < �⇤ < M , instead of w1(s, x) and w2(s, x).

Now, inequalities (1.12) also imply that the only wavefront to which u(t, x) can

converge (as t ! +1) is some translation �⇤(x + c⇤t + b) of the critical wavefront

�⇤(x + c⇤t). However, this is not possible in view of the following argument. Take

some A1 < A� and ĝ  g satisfying (H) with L
ĝ

= g0(0). Set

w⇤(s, x) = min{A1e
�⇤(x+cs), w0(s, x)}.

Then by the comparison principle, solution w⇤(t, x) of the initial value problem

w
t

(t, x) = w
zz

(t, x)� w(t, x) + ĝ(w(t� h, x)), w(s, x) = w⇤(s, x), (s, x) 2 ⇧0,

satisfies w⇤(t, x)  u(t, x) for all t � 0, x 2 R. On the other hand, by invoking

Theorem I.5, we find that w⇤(t, x) converges uniformly to some wavefront �̂⇤(x+ c⇤t)

of the modified equation. Keeping z = x + c⇤t fixed and passing to the limit in

w⇤(t, x)  u(t, x) (as t ! +1) for each fixed z, we find that �̂⇤(z)  �⇤(z + b) for

all z 2 R. However, this is not possible since �⇤(z) decays at �1 faster than �̂⇤(z).

Finally, in order to prove the inequality (1.13), it su�ces to consider the initial

function

w̃3(s, x) = max{�xe�⇤(x+cs), w0(s, x)}, (s, x) 2 ⇧0,

instead of w2(s, x). Then we proceed can similarly to the proof of inequalities (1.12)

by applying Theorem I.5A.

3.5 Proof of Theorem I.6 and Corollary 3

Let the triple (c,�
c

, �) 2 [c#,+1) ⇥ [�1(c),�2(c)) ⇥ R+ be as in Lemma 2 (i.e.

�
c

= �1, � = 0 if c = c# and � > 0,�
c

2 (�1(c),�2(c)) if c > c#). Theorem I.6 and

Corollary 3 follow from the next assertions.
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Lemma 6. Assume (UM) and let the initial function w0 satisfy (IC1). Consider

c � c# and let �(z) denote a positive semi-wavewfront to equation (3.2). Then the

inequalities

�(z)� qe��s⇠(z � b,�
c

)  w0(s, z)  �(z) + qe��s⇠(z � b,�
c

), (s, z) 2 ⇧0,

(where q > 0, b 2 R are some fixed numbers) imply that the solution w(t, z) of (3.1),

(3.2) satisfies

(3.17) �(z)� qe��t⇠(z � b,�
c

)  w(t, z)  �(z) + qe��t⇠(z � b,�
c

), t � 0, z 2 R.

Proof. Set �±(t, z) = ±(w(t, z)� (�(z)± qe��t⇠(z � b,�
c

))) and

(L�)(t, z) := �
zz

(t, z)� �
t

(t, z)� c�
z

(t, z)� �(t, z).

Then

(L�±)(t, z) = ⌥(g(w(t� h, z� ch))� g(�(z� ch))) + qe�c(z�b)e��t[��2 + c�+1� �].

Therefore we obtain, for all z 2 R, t 2 (0, h],

(L�±)(t, z) � qe�c(z�b)e��t[��2 + c�+ 1� � � g0(0)e�he�ch�c ] � 0.

Since, in addition, �±(0, z)  0 and �(t, z) is exponentially bounded, an application

of the Phragmèn-Lindelöf principle yields �±(t, z)  0 for all t 2 [0, h]. Finally,

the step by step procedure completes the proof of the inequality �±(t, z)  0 for all

t � 0.

Lemma 7. Let all the conditions of Lemma 6 be satisfied and c � c#. Assume, in

addition, that |g0(u)| < 1 on some interval [� ⇢,+ ⇢], ⇢ > 0. If, for some b 2 R,

the semi-wavefront profile satisfies: �(z � ch) 2 (� ⇢/2,+ ⇢/2), for z � b. Then

� is actually a wavefront (i.e. �(+1) = ) and
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(3.18) |w0(s, z)� �(z)|  q⌘
�c(z � b), (s, z) 2 ⇧0,

for q 2 (0, ⇢/2] implies that the solution w(t, z) of (3.1), (3.2) satisfies

(3.19) |w(t, z)� �(z)|  qe��t⌘
�c(z � b), t � 0, z 2 R.

Proof. We only make the upper estimation, the lower estimation is analogous. We

denote �(t, z) = w(t, z)� (�(z) + qe��t⌘(z � b)).

So, for (t, z) 2 [0, h]⇥ (�1, b] we have:

(L�)(t, z) = (Lw)(t, z)� (L�)(z)� qL(e��t⌘(z � b))

= g(�(z � ch))� g(w(t� h, z � ch)) + qe�(z�b)e��t[��2 + c�+ 1� �]

� �L
g

|�(z � ch)� w(t� h, z � ch)|+ qe�(z�b)e��t[��2 + c�+ 1� �]

� �g0(0)qe��(t�h)⌘(z � ch� b) + qe�(z�b)e��t[��2 + c�+ 1� �]

� qe�(z�b)e��t[��2 + c�+ 1� � � g0(0)e�he��ch] � 0

And for (t, z) 2 [0, h]⇥ [b,1) we have:

� �0  �(z � ch)� qe��(t�h)⌘(z � b� ch)  w(t� h, z � ch)(3.20)

w(t� h, z � ch)  �(z � ch) + qe��(t�h)⌘(z � ch� b)  + �0(3.21)

Now, for some ✓(t, z) 2 [� �0,+ �0] we have:

(L�)(t, z) = (Lw)(t, z)� (L�)(z)� qL(e��t⌘(z � b))

= g(�(z � ch))� g(w(t� h, z � ch)) + qe��t[1� �]

� g0(✓(t, z))[�(z � ch)� w(t� h, z � ch)] + qe��t[1� �]

� g0(✓(t, z))qe��(t�h) + qe��t[1� �] � 0
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So maximum principle implies:

w(t, z)  �(z) + qe��t⌘(z � b) z 2 R t 2 [0, h]

So, using (3.20), (3.21) and step method on intervals [h, 2h], [2h, 3h]... we obtain

(3.19).

Finally, since g : [� ⇢,+ ⇢] ! [� ⇢,+ ⇢] =: I is well defined and

� ⇢  m := lim inf
zto+1

�(z)  M := lim sup
zto+1

�(z)  + ⇢,

it follows from [19, Remark 12] that g([m,M ]) ◆ [m,M ]. On the other hand, g is a

contraction on I so that M = m = .

Lemma 8. Let g(x) and w0(t, z) meet all the assumptions of Corollary 3. Then

inequality (3.8) implies that the solution w(t, z) of (3.1), (3.2) satisfies (3.19) for

some positive ⇢, �.

Proof. It is easy to see that there exist monotone functions g+, g� : R+ ! R+ such

that

(i) g�(x)  g(x)  g+(x), x � 0;

(ii) g�(x) = g(x) = g+(x) for all x from some neighborhood of 0;

(iii) g+ satisfies (H) with + = g(x
m

) and g� satisfies (H) with � = g(g(x
m

)).

Let w±(t, z) denote the solution of the initial value problem

w
t

(t, z) = w
zz

(t, z)� cw
z

(t, z)� w(t, z) + g±(w(t� h, z � ch)),

w±(s, z) = w0(s, z), (s, z) 2 ⇧0,

and let �± be wavefront solutions of the stationary equations

0 = �00(z)� c�0z � �(z) + g±(�(z � ch)).
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normalized by the condition lim
x!�1 �±(x)/�(x) = 1 (this is possible in view of (iii)).

Then Theorem I.5A (applied to w±(t, z)) and the comparison principle guarantees

that, for each small ✏ > 0 there exist a large b > 0 and T > 0 such that

(3.22) � � ✏  w�(t, z)  w(t, z)  w+(t, z)  + + ✏, for all t � T, z � b� ch.

Henceforth, we will fix ✏ > 0 small enough to have |g0(x)| < 1 for all x 2 [��✏,++

✏].

Now, invoking Lemma 6, we also obtain that

(3.23) |w(t, z)� �(z)|  0.5⇢e��te�(z�b), t � T, z  b,

with ⇢ < 0.5(k+ � k�).

Finally, using relations (3.22), (3.23) and Lemma 7 we obtain the proof of the

lemma.
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