ÍNDICE GENERAL

CAPÍ	TULO I: INTRODUCCION	1
1.1	ANTECEDENTES Y MOTIVACION	
1.2	DESCRIPCIÓN DEL PROBLEMA	
1.3	SOLUCIÓN PROPUESTA	
1.4	OBJETIVOS	
1.4.1		
1.4.2		
1.5	ALCANCES	
1.6	METODOLÓGICAS Y HERRAMIENTAS DE SOLUCIÓN	
1.7	RESULTADOS ESPERADOS	
1.8	ORGANIZACIÓN DEL DOCUMENTO.	
CAPÍ	TULO II: MARCO TEORICO	6
2.1	SISTEMAS DISPERSOS	7
2.2	ANÁLISIS DE TAMIZADO	
2.3	CARACTERIZACIÓN	_
2.3.1		
2.3.2		_
2.3.3		
2.4	DISTRIBUCIÓN DE TAMAÑO DE PARTÍCULAS	
2.4.1	Análisis incremental	9
2.4.2		
2.5	FUNCIÓN NORMAL LOGARÍTMICA	12
2.6	TÉCNICAS DE REDUCCIÓN DE TAMAÑO	
2.7	PROCEDIMIENTOS DE MEDICIÓN DE PARTÍCULAS	
2.8	EQUIPOS PARA MOLER	13
2.8.1	MOLINO DE BOLAS	13
CAPIT	TULO III: PROTOCOLO DE MEDICIÓN EMPLEADO	14
3.1	FUNDAMENTACIÓN DEL PROTOCOLO	
3.2	METODOLOGÍA	
3.2.1	RECEPCIÓN DE LAS MUESTRAS	
3.2.2		
3.2.3		
3.2.4	OBTENCIÓN DE LA DISTRIBUCIÓN DE TAMAÑO	17

CAPÍTULO IV: RESULTADOS OBTENIDOS	
4.1 RESULTADOS OBTENIDOS	19
4.1.1 MUESTRA BASE	19
4.1.2 DATOS DE LOS ENSAYOS	20
4.1.2.1 ENSAYO CON 2 BOLAS DE DIÁMETRO 44,7 MM	20
4.1.2.2 ENSAYOS CON 2 BOLAS DE DIÁMETRO DE 47,7 MM	20
4.1.2.3 ENSAYOS CON 4 BOLAS DE DIÁMETRO DE 44,7 MM	
4.1.2.4 ENSAYOS CON 4 BOLAS DE DIÁMETRO DE 47,7 MM	21
4.1.2.5 OBSERVACIONES DE LOS ENSAYOS	22
4.2 REDUCCIÓN DE TAMAÑO	23
4.3 PÉRDIDA DE MATERIAL	23
4.4 REPRESENTACIÓN DE LA DISTRIBUCIÓN DE TAMAÑO DE PARTICULAS	24
CAPÍTULO V: DISCUSIÓN DE RESULTADOS	27
5.1 ANÁLISIS DEL COMPORTAMIENTO DE LA DISTRIBUCIÓN DE	28
TAMAÑO DEL SISTEMA DE PARTICULAS MOLIDO	28
5.2 ANÁLISIS DE LA METODOLIGIA Y CAPTURA DE DATOS	
5.3 ANALISIS RELATIVO A LA INFLUENCIA DE LA MUESTRA BASE EN	
LOS RESULTADOS EXPERIMENTALES	31
CONCLUSIONES	33
ANEXOS	36
A MÁQUINA DE LOS ÁNGELES	37
B. PROTOCOLO CONFECCIONADO POR SR. MEZA EN SU MEMORIA PARA INGENIERO MECÁNICO	
INSERTED MECANICO.	30
B.1 PROTOCOLO	
B.1.1 Introducción	38
B.1.2 PLANTEAMIENTO DEL PROBLEMA	
B.1.3 OBJETO GENERAL DEL PROTOCOLO	
B.1.4 OBJETIVOS ESPECÍFICOS	38
B.1.5 METODOLOGÍA	
B.1.6 RECEPCIÓN DEL MATERIAL	40
B.1.7 PREPARACIÓN DEL EQUIPAMIENTO	40
B.1.8 REALIZACIÓN DE LAS PRUEBAS	40

B.1	.9	REPRESENTACIÓN DE LOS DATOS.	41
B.2	. 1	NORMATIVA UTILIZADA	41
В.3	P	PROCEDIMIENTO GENERAL	42
В.3	.1	RECEPCIÓN DE LAS MUESTRAS.	
В.3	.2	PREPARACIÓN DEL EQUIPO DE MOLIENDA.	43
В.3	.3	PREPARACIÓN DEL EQUIPO DE TAMIZADO.	
В.3	.4	Preparación de la Balanza.	45
В.3	.5	DESARROLLO DE LAS PRUEBAS	45
В.3	.6	REGISTRO DE LOS DATOS.	47
В.3	.7	ANÁLISIS DE LOS DATOS	
В.3	.8	TIEMPOS DE MOLIENDA.	49
В.3	.9	TIEMPO DE TAMIZADO.	50
c.	GF	RADOS DE ENSAYO (DEFINIDOS POR SUS RANGOS DE TAMAÑO, EN (MM)	52
D.	DI	ETERMINACIÓN DE LA MASA A ESTUDIAR	53
Ε.	D	ATOS PARA MOLIENDA CON 2 KG Y 2 BOLAS DE 44,7 MM (GRAVILLA ¾'')	54
F.	DI	STRIBUCIONES INCREMENTAL Y ACUMULATIVA (2 KG Y 2 BOLAS DE 44,7 MM)	58
G.	D	ATOS PARA MOLIENDA CON 2 KG Y 4 BOLAS DE 44,7 MM (GRAVILLAS ¾'')	66
н.	DI	ISTRIBUCIONES INCREMENTALES Y ACUMULATIVA (2 KG Y 4 BOLAS DE 44,7 MM)	70
I.	DA	ATOS PARA MOLIENDA CON 2 KG Y 2 BOLAS DE 47,7 MM (GRAVILLA ¾'')	77
J.	Dis	TRIBUCIONES INCREMENTALES Y ACUMULATIVAS (2 KG Y 2 BOLAS DE 47,7 MM DE DIÁMETRO)	81
K.	DA	ATOS PARA MOLIENDA CON 2 KG Y 4 BOLAS DE 47,7 MM (GRAVILLA ¾'')	88
L.	Dis	STRIBUCIONES ACUMULATIVA E INCREMENTAL (2 KG Y 4 BOLAS DE DIÁMETRO 47,7 MM)	92
Μ.		ARIACIÓN DE MASA DE ACUERDO A CLASE	
N.	El	FECTO DEL DIAMETRO DE BOLAS EN LA DISTRIBUCIÓN ACUMULATIVA E INCREMENTA	L. 104

ÍNDICE DE FIGURAS

FIGURA 2. 1 Conjunto de Tamices	7
FIGURA 2. 2 Distribución Incremental	10
FIGURA 2. 3 Distribución Acumulativa	
FIGURA 4. 1 Variación de la masa para la clase 7	23
FIGURA 4. 2 Distribución Acumulativa a 1784 revoluciones utilizando 2 bolas de 44,7 mm de diámetro.	26
FIGURA 4. 3 Distribución Incremental a 1784 revoluciones utilizando 2bolas de 44,7 mm de diámetro.	
didirioti o.	20
FIGURA 5. 1 Distribución Acumulativa a 1.784 revoluciones para todos los ensayos	29
FIGURA 5. 2 Distribución Incremental a 1.784 revoluciones para todos los ensayos	30
FIGURA 5. 3 Fotografía de un microscopio, de un ensayo a 1.784 revoluciones con 6 bolas	32

ÍNDICE DE TABLAS.

TABLA 4. 1 Datos de ensayo para 2 kg de material gravilla muestra	19
TABLA 4. 2 Datos de ensayo para 2 kg de material de gravilla utilizando 2 bolas de diámetro 44,	
mm	20
TABLA 4. 3 Datos de ensayos para 2 kg de material de gravilla utilizando 2 bolas de diámetro de	
47,7 mm	21
TABLA 4. 4 Datos de ensayos para 2 kg de material de gravilla utilizando 4 bolas de diámetro de	Э
44,7 mm	21
TABLA 4. 5 Datos de ensayo para 2 kg de material de gravilla, utilizando 4 bolas de diámetro 47	,7
mm	22
TABLA 4. 6 Porcentaje de pérdida de material de los ensayos	24
TABLA 4. 7 Datos de molienda a 1784 revoluciones utilizando 2 bolas de 44,7 mm diámetro	25