Contenido

ĺnd	ice d	de figuras	VI
RE	SUM	IEN	X
ΑB	STR	ACT	XI
1.	INT	RODUCCIÓN	1
1	.1.	Estudio de Vitis vinífera	1
1	.2.	Generalidades del cultivar Carménère	1
1	.3.	Desarrollo reproductivo vegetal	2
1	.4.	Desarrollo frutal de la vid	3
1	.5.	Desarrollo de órganos florales y gametofitos en plantas	7
	.6. inger	Características estructurales de los factores de transcripción "zinc-	8
		VvPSZ3 factor de transcripción del tipo "zinc-finger" involucrado en crollo reproductivo de vides	
2.	HIP	PÓTESIS	13
3.	ОВ	JETIVOS	13
3	3.1.	Objetivo general	13
3	3.2.	Objetivos específicos	13
4.	MA	TERIALES Y MÉTODOS	14
4	.1.	Materiales	14
	4.1.	.1. Hardware	14
	4.1.	.2. Material vegetal	14
	4.1.	.3. Oligonucleotidos utilizados en la realización de esta memoria	15
4	.2.	Métodos	16
	4.2. tran	.1. Predicción de estructura secundaria de los factores de nscripción AtZAT4 y VvPSZ3	16
	4.2.: cod	.2. Modelamiento por homología de los factores de transcripción dificados	16
	4.2.	.3. Clonamiento del gen vvPSZ3	17
	4.2.	.4. Generación de plantas de Arabidopsis thaliana	18
	4.2.	.5. Transformación de plantas de Arabidopsis thaliana	19
	4.2.	.6. Análisis fenotípico	20
	4.2.	.7. Extracción de ARN	21
	4.2.	.8. Sintesis de ADNc	22
	4.2.	.9. Análisis de expresión de los genes AtZAT4 y VvPSZ3 por qPCR	22
5.	RES	SULTADOS	23

5.1.	Predicción de estructura secundaria de los factores de transcripción	23
5.2. trans	Construcción de las estructuras tridimensionales de los factores de cripción AtZAT4 y VvPSZ3	24
5.3.	Clonamiento del gen VvPSZ3	29
5.4.	Clonamiento en el vector binario pCambia 1303	31
5.6. CS84	Genotipificación de putativas plantas complementadas de la cepa	35
5.7. trans	Análisis de la expresión de los genes VvPSZ3 y AtZAT4 en plantas génicas	38
5.8.	Análisis fenotípico de putativas plantas complementadas	41
6. Dis	cusión	43
	Los dominios "zinc-finger" del tipo C2H2 son conservados ZAT4 com	
	VvPSZ3 complementaria la función de AtZAT4 en las plantas de la ce 1944	-
7. CO	NCLUSIONES	49
8. RE	FERENCIAS	50

Índice de figuras

FIGURA 1 CURVA DE DESARROLLO NORMAL DEL FRUTO DE VID EN CONJUNTO CON
EL CRECIMIENTO DE LA SEMILLA DENTRO DEL MISMO, LO CUAL DEMUESTRA
QUE LA COORDINACIÓN DE AMBOS EVENTOS ES CRUCIAL PARA EL CORRECTO
DESARROLLO DEL FRUTO.
FIGURA 2 EN VERDE, TASA DE POLEN ABERRANTE EN DISTINTOS CULTIVARES DE
VITIS VINÍFERA EN DIFERENTES TEMPORADAS Y CULTIVARES DE VID. EN ROJO,
PORCENTAJE DE "MILLERANDAJE" PRESENTADO POR LAS MISMAS VARIEDADES
EN LOS MISMOS TIEMPOS, SUGIRIENDO QUE LA RELACIÓN ENTRE EL POLEN
ABERRANTE Y TASA DE "MILLERANDAJE" ES DIRECTA.
FIGURA 3 PATRÓN DE EXPRESIÓN DE GENES QUE CODIFICAN PARA FACTORES DE
TRANSCRIPCIÓN DEL TIPO "ZINC-FINGER" DURANTE EL DESARROLLO DE
ANTERAS Y POLEN EN LA ESPECIE PETUNIA HYBRIDA
FIGURA 4 ALINEAMIENTO ESTRUCTURAL DE LOS DOMINIOS "ZINC-FINGER" C2H2
CONOCIDOS QUE CORRESPONDEN A ESTA FAMILIA
FIGURA 5 COMPARACIÓN DE LA SECUENCIA AMINOACÍDICA DE VVPSZ3 CON SUS
PUTATIVOS HOMÓLOGOS DE OTRAS ESPECIES DE PLANTAS. EL ALINEAMIENTO
FUE REALIZADO CON LAS SECUENCIAS CON MAYOR IDENTIDAD PRESENTES EN
PLANTAS (AL AÑO 2011). LOS RESIDUOS AMINOACIDICOS IDÉNTICOS SE
MUESTRAN ENNEGRECIDOS. LOS TRES DOMINIOS "ZINC FINGER" Y LA CAJA L
ENCONTRADOS USANDO INTERPROSCAN Y SMART SE ENCUENTRAN
ENCERRADOS EN CUADROS. LA SEÑAL DE LOCALIZACIÓN NUCLEAR
(IDENTIFICADA CON NUCPRED; BRAMEIER Y COLS., 2007) SE ENCUENTRA
SEÑALADA COMO NLS. LA CAJA EAR DEL EXTREMO CARBOXILO TERMINAL FUE
IDENTIFICADA POR INSPECCIÓN VISUAL, DE ACUERDO A LO DESCRITO EN LA
LITERATURA11
FIGURA 6 REPRESENTACIÓN ESQUEMÁTICA PROPORCIONAL DE LA INSERCIÓN DE
ADN-T DENTRO DEL GENOMA DE A. THALIANA Y DENTRO DE LA SECUENCIA
PROMOTORA DE ZAT4. EL ADN-T CORRESPONDE AL VECTOR PCSA110, QUE
LLEVA GEN DE RESISTENCIA A FOFINOTRICINA (BASTA; COMANDADO POR
PROMOTOR 1'2'), GEN DE RESISTENCIA A AMPICILINA Y GEN MARCADOR GUS
(COMANDADO POR PROMOTOR LAT52). RB Y LB, BORDE DERECHO E IZQUIERDO
DEL ADN-T, RESPECTIVAMENTE. BASE 1 MARCA EL INICIO DE LA REGIÓN
CODIFICANTE12
FIGURA 7 ALINEAMIENTO DE SECUENCIAS DE LOS DOMINIOS "ZINC-FINGER" DE LOS
FACTORES DE TRANSCRIPCIÓN ATZAT4 Y VVPSZ3 CON LAS SECUENCIAS
CONOCIDAS DE PROTEÍNAS CON DOMINIOS PERTENECIENTES A LA FAMILIA
C2H223
FIGURA 8 ALINEAMIENTO DE LA SECUENCIA AMINOACIDICA DEL FACTOR DE
TRANSCRIPCIÓN ATZAT4 CONTRA LA BASE DE DATOS PDB, NO SE OBTUVO
NINGUNA COINCIDENCIA CON UN PORCENTAJE DE IDENTIDAD MAYOR AL 40%.
SE IDENTIFICAN 2 DE LOS 3 MOTIVOS "ZINC-FINGER" PREDICHOS EN TRABAJOS
ANTERIORES
FIGURA 9 ALINEAMIENTO DE LA SECUENCIA AMINOACIDICA DEL FACTOR DE
TRANSCRIPCIÓN VVPSZ3 CONTRA LA BASE DE DATOS PDB, NO SE OBTUVO
NINGUNA COINCIDENCIA CON UN PORCENTAJE DE IDENTIDAD MAYOR AL 40%.
SE IDENTIFICAN LOS 3 MOTIVOS "ZINC-FINGER" PREDICHOS EN TRABAJOS
ANTERIORES25
FIGURA 10 MODELO DEL FACTOR DE TRANSCRIPCIÓN ATZAT4 GENERADO CON EL
SOFTWARE MODELLER V9.1427
FIGURA 11 MODELO DEL FACTOR DE TRANSCRIPCIÓN VVPSZ3 GENERADO CON EL
SOFTWARE MODELLER VO 14

FIGURA 12 ESTRUCTURAS CORRESPONDIENTES A LOS MOTIVOS "ZINC-FINGER"
(ZF1-3) DE LOS FACTORES DE TRANSCRIPCIÓN ATZAT4 Y VVPSZ3 GENERADOS
CON EL SOFTWARE MODELLER V9.14 UTILIZANDO COMO TEMPLADOS LAS 5
ESTRUCTURAS CRISTALIZADAS CON MEJOR PORCENTAJE DE IDENTIDAD, EN
AZUL LOS RESIDUOS DE CISTEÍNA, EN AMARILLO LOS RESIDUOS DE HISTIDINA. 28 FIGURA 13 PATRÓN DE MIGRACIÓN ELECTROFORÉTICA DE PRODUCTOS
OBTENIDOS DE LA REACCIÓN PCR REALIZADA SOBRE ADN GENÓMICO DE
FLORES DE VID, SE UTILIZÓ GENERULER 100 BP DNA LADDER
(LIFETECHNOLOGIES, SM0241), LA BANDA AMPLIFICADA CORRESPONDE A
APROXIMADAMENTE 1080 PARES DE BASES29
FIGURA 14 AMPLIFICACIÓN DEL GEN VVPSZ3 DE 7 COLONIAS SELECCIONADAS
POSITIVAS EN EL PARA LA INSERCIÓN DEL FRAGMENTO DE 1080 PARES DE
BASES CORRESPONDIENTE AL GEN VVPSZ3, SE UTILIZÓ GENERULER 100 BP DNA
LADDER (LIFETECHNOLOGIES, SM0241)30
FIGURA 15 ESQUEMA DE LA CONSTRUCCIÓN DENTRO DEL VECTOR BINARIO
PCAMBIA 1303, EL GEN VVPSZ3 SE INSERTÓ ENTRE LOS SITIOS DE RESTRICCIÓN
NCOI Y SPEI31
FIGURA 16 VERIFICACIÓN DE LA PRESENCIA DEL GEN VVPSZ3 EN ADN PLAMIDIAL DE
AGROBACTERIUM TUMEFACIENS QUE CONTIENE LA CONSTRUCCIÓN FINAL
PARA LA TRANSFORMACIÓN DE PLANTAS DE ARABIDOPSIS THALIANA FUE CHEQUEADA POR PCR UTILIZANDO ADN PLASMIDIAL DE BACTERIAS DE E. COLI
RECOMBINANTES, GENERULER 100 BP DNA LADDER (LIFETECHNOLOGIES
SM0241)32
FIGURA 17 ESQUEMA DEL PROCEDIMIENTO DE INMERSIÓN FLORAL
FIGURA 18 PCR DE PLANTAS DEL TIPO SILVESTRE TRANSFORMADAS CON EL GEN
VVPSZ3, COMO BLANCO SE UTILIZÓ EL MIX DE LA REACCIÓN DE PCR SIN ADN
TEMPLADO, ADN GENÓMICO DE PLANTAS DEL TIPO SILVESTRE (WT) COMO
CONTROL POSITIVO SE UTILIZÓ ADN PLASMIDIAL DE LAS BACTERIAS
RECOMBINANTES Y ADN GENÓMICO DE 8 LINEAS DE PLANTAS
TRANSFORMADAS, SE UTILIZÓ EL MARCADOR DE PESO MOLECULAR
GENERULER 1 KB DNA LADDER (LIFE TECHNOLOGIES SM0312)34
FIGURA 19 PCR DE PLANTAS DEL TIPO SILVESTRE TRANSFORMADAS CON EL GEN
VVPSZ3, COMO BLANCO SE UTILIZÓ EL MIX DE LA REACCIÓN DE PCR SIN ADN
TEMPLADO, ADN GENÓMICO DE PLANTAS DEL TIPO SILVESTRE (WT) COMO
CONTROL POSITIVO SE UTILIZÓ ADN PLASMIDIAL DE LAS BACTERIAS RECOMBINANTES Y ADN GENÓMICO DE 8 LINEAS DE PLANTAS
TRANSFORMADAS, SE UTILIZÓ EL MARCADOR DE PESO MOLECULAR
GENERULER 1 KB DNA LADDER (LIFE TECHNOLOGIES SM0312)34
FIGURA 20 ESQUEMA DE LA INSERCIÓN DE ADN-T QUE INTERRUMPE EL PROMOTOR
DEL GEN ATZAT4, TAMBIÉN SE MUESTRA EL DISEÑO EXPERIMENTAL PARA
DETECTAR LA PRESENCIA DEL INSERTO, INSERTOFW, PARTIDOR QUE SE UNE A
UNA REGIÓN INTERNA DEL ADN-T, PROMRV, PARTIDOR QUE SE APAREA CON
UNA REGIÓN RIO ARRIBA DEL PROMOTOR DEL GEN, MIENTRAS QUE PROMFW SE
APAREA CON UNA REGIÓN INTERNA DEL PROMOTOR35
FIGURA 21 PATRÓN DE MIGRACIÓN ELECTROFORÉTICA DE UN FRAGMENTO DE LA
INSERCIÓN DE ADŅ-T DE 516 PARES DE BASES, COMO BLANCO SE ŲTILIZÓ EL
MIX DE LA REACCIÓN DE PCR SIN ADN COMO TEMPLADO, ADN GENÓMICO DE
PLANTAS DEL TIPO SILVESTRE COMO CONTROL NEGATIVO, Y COMO CONTROL
POSITIVO PLANTAS DE LA CEPA ZAT4+/- Y 8 LINEAS DE PLANTAS
TRANSFORMADAS, LO QUE COMPRUEBA QUE LAS PLANTAS PERTENECEN A LA
CEPA CS812944, SE UTILIZÓ GENERULER 100 BP DNA LADDER (LIFETECHNOLOGIES)36
FIGURA 22 PATRÓN DE MIGRACIÓN ELECTROFORÉTICA DE UN FRAGMENTO DEL
PROMOTOR DEL GEN ATZAT4 DE 1330 PARES DE BASES, COMO BLANCO SE
UTILIZÓ EL MIX DE LA REACCIÓN DE PCR SIN ADN COMO TEMPLADO, ADN

	GENÓMICO DE PLANTAS DEL TIPO SILVESTRE COMO CONTROL, Y COMO
	CONTROL POSITIVO ADN GENÓMICO DE PLANTAS DE LA CEPA ZAT4+/- Y 8 LÍNEAS
	DE PLANTAS TRANSFORMADAS, LO QUE SUGIERE QUE 7 DE LAS 8 LÍNEAS
	ANALIZADAS NO AMPLIFICARON EL PROMOTOR DEL GEN, POR LO QUE SE
	SUGIERE QUE ESTAS SON PLANTAS HOMOCIGOTAS PARA LA INSERCIÓN DE
	ADN-T, SE UTILIZÓ GENERULER 100 KB DNA LADDER (LIFETECHNOLOGIES)37
	JRA 23 EXPRESIÓN RELATIVA DEL GEN ATZAT4 EN PLANTAS DEL TIPO
	SILVESTRE (WT), PLANTAS DEL TIPO SILVESTRE CON EL GEN VVPSZ3
	(WT::VVPSZ3), ADN GENÓMICO DE PLANTAS HETEROCIGOTAS (ZAT4+/-) Y
	PLANTAS DE LA LÍNEA CS149922 CON EL GEN VVPSZ3 (ZAT4-/-::VVPSZ3)
	MOSTRANDO QUE, TANTO EN PLANTAS WT COMO EN LAS LÍNEAS ANALIZADAS
	DE WT::VVPSZ3 LA EXPRESIÓN DEL GEN ATZAT4 ES SIMILAR MIENTRAS QUE EN
	PLANTAS HETEROCIGOTAS EXISTE UNA DISMINUCIÓN CONSIDERABLE DE LA
	EXPRESIÓN DE ESTE Y EN PLANTAS ZAT4-/-::VVPSZ3 LA EXPRESIÓN CAE UN 70%
	RESPECTO A LA REGISTRADA EN PLANTAS DEL TIPO SILVESTRE39
FIGU	JRA 24 EXPRESIÓN RELATIVA DEL GEN VVPSZ3 EN PLANTAS DEL TIPO
	SILVESTRE (WT), PLANTAS DEL TIPO SILVESTRE CON EL GEN VVPSZ3
	(WT::VVPSZ3), PLANTAS HETEROCIGOTAS (ZAT4+/-) Y PLANTAS DE LA LÍNEA
	CS149922 CON EL GEN VVPSZ3 (ZAT4-/-::VVPSZ3) MOSTRANDO QUE, TANTO EN
	PLANTAS WT COMO EN LAS LÍNEAS ANALIZADAS DE ZAT4+/- LA EXPRESIÓN DEL
	GEN VVPSZ3 ES CERO, YA QUE ESTAS PLANTAS NO CONTIENEN EL GEN
	FUNCIONANDO COMO CONTROLES NEGATIVOS, MIENTRAS QUE EN PLANTAS
	TRANSFORMADAS CON EL GEN PARA LA CEPA ZAT4-/-::VVPSZ3 ES SIMILAR LO
	QUE MUESTRA QUE LA SOBRE-EXPRESIÓN DEL GEN ES EFECTIVA EN AMBAS
	LÍNEAS40
	JRA 25 NUMERO DE SEMILLAS POR SILICUA EN PLANTAS DEL TIPO SILVESTRE
	(WT), LA CEPA CS841944 (ZAT4+/-), PLANTAS DE LA CEPA CS841944 CON EL GEN
	VVPSZ3 (ZAT4::VVPSZ3) Y PLANTAS DEL TIPO SILVESTRE TRANSFORMADAS CON
	EL GEN VVPSZ3 (WT::VVPSZ3), DONDE SE MUESTRA QUE EL FENOTIPO PERDIDO
	EN LA CEPA CS8/41944(ZAT4+/-) FUE RECUPERADO GRACIAS A LA
	TRANSFORMACIÓN42
	JRA 26 DIAGRAMA DE DEL MOTIVO "ZINC-FINGER" DE ZIF268. LAS CADENAS
	LATERALES DE LAS HISTIDINAS Y CISTEÍNAS CONSERVADAS, LOS CUALES
	ESTÁN INVOLUCRADOS EN LA COORDINACIÓN DEL ZINC46

Índice de tablas

TABLA 1 CARACTERÍSTICAS DEL COMPUTADOR UTILIZADO EN LA REALI	ZACIÓN DEL
PROYECTO	14
TABLA 2 PARTIDORES CEBADORES PARA LAS REACCIONES DE PCR UT	ILIZADAS EN
EL DESARROLLO DEL TRABAJO DE TESIS.	15