TABLA DE CONTENIDOS

		p	ágina
De	edica	toria	I
Ag	grade	ecimientos	II
Ta	ıbla o	de Contenidos	III
Ín	dice	de Figuras	VI
Ín	dice	de Tablas	VIII
Re	esum	en	IX
1.	Intr	roducción	10
	1.1.	Descripción	. 10
		1.1.1. Contexto del proyecto	. 10
		1.1.2. Definición del problema	. 11
		1.1.3. Propuesta de solución	. 12
	1.2.	Objetivos	. 12
	1.3.	Alcances	. 13
		1.3.1. Trabajo Relacionado	. 14
	1.4.	Resumen	. 15
2.	Mar	rco Teórico	16
	2.1.	Estaciones de monitoreo	. 16
	2.2.	Normas de calidad del aire	. 19
	2.3.	Efectos del material particulado en el ser humano	. 20
	2.4.	Tipos de material particulado	. 21
		2.4.1. Material particulado PM 2.5	. 22
		2.4.2. Material particulado PM 10	. 22
	2.5.	Componentes para la construcción de la estación	. 23
		2.5.1. Microcomputador Orange Pi one	. 23
		2.5.2. Arduino UNO	. 24

		2.5.3.	Servidor de base de datos	25
		2.5.4.	Servidor web	26
		2.5.5.	Servicio web	26
		2.5.6.	Sensor de calidad del aire	26
		2.5.7.	Costo de componentes	27
	2.6.	Librer	ías de código utilizadas	28
		2.6.1.	Librería de python Numpy	28
		2.6.2.	Librería de python Urllib2	28
3.	Pro	ceso d	e selección del sensor	29
	3.1.	Caract	terísticas generales de los sensores	29
		3.1.1.	Sensor SDS021	29
		3.1.2.	Sensor PPD42	30
		3.1.3.	Sensor GP2Y1010A	34
		3.1.4.	Sensor BL25B1	35
		3.1.5.	Sensor DSM501A	36
	3.2.	Comp	aración de sensores	38
		3.2.1.	Escenario de pruebas	38
		3.2.2.	Instalación de sensores	39
		3.2.3.	Pruebas comparativas de los sensores	42
		3.2.4.	Calibración y corrección de los datos de prueba	48
		3.2.5.	Gráficos comparativos y conclusiones	52
	3.3.	Conclu	usiones	55
	3.4.	Resum	nen	56
4.	Imp	lemen	tación de la estación	57
	4.1.	Const	rucción y montaje de dispositivos finales	57
	4.2.	Conex	ión, comunicación y pruebas funcionales	60
		4.2.1.	Modelo de bases de datos para la estación	60
		4.2.2.	Descripción de entidades	62
		4.2.3.	Conexión con servicio de comunicación	63
	4.3.	Prueb	as de comunicación y almacenamiento en la base de datos	66
5.	Con	clusio	nes	67
	5.1	Invest	igación de sensores	67

	5.2.	Prueba	as de sensores	68
	5.3.	Constr	rucción de la estación	69
	5.4.	Objeti	vos	69
6.	Tral	oajo F	uturo	71
\mathbf{G}	losari	o		73
Bi	bliog	rafía		74
Aı	nexos	8		
A:	Es	pecific	eación sensores	78
	A.1.	Tablas	de especificación de sensores	78
		A.1.1.	Sensor SDS021	78
		A.1.2.	Sensor PPD42	79
		A.1.3.	Sensor GP2Y1010AU0F	79
		A.1.4.	Sensor DSM501A	80
		A.1.5.	Sensor BL25B1	80
	A.2.	Código	os de funcionamiento sensores	81
		A.2.1.	Código Arduino lectura sensor PPD42	81
		A.2.2.	Código sensor GP2Y1010AU0F	82
		A.2.3.	Código sensor SDS021	83
		A.2.4.	Código Arduino lectura sensor DSM501A	84
		A.2.5.	Código sensores con funcionamiento conexión serial directa a	
			Orange pi	85
	A.3.	Gráfico	os comparativos de los sensores V/S el sensor del gobierno	88
		A.3.1.	Gráfico Comparativo sensor PPD42NS MP2.5 y MP 10	88
		A.3.2.	Gráfico Comparativo sensor DSM501A MP2.5 y MP 10	89
		A.3.3.	Gráfico Comparativo sensor GP2Y1010AAU0F MP2.5 y MP 10	90
		A.3.4.	Gráfico Comparativo sensor SDS021 MP2.5 y MP 10 $\ \ldots \ \ldots$	91
		A.3.5.	Gráfico Comparativo sensor BL25B1 MP2.5 y MP 10 $ \dots \dots$	92

ÍNDICE DE FIGURAS

		pagına
2.1	. Estación de calidad del aire y los parámetros de medición	. 17
2.2	. Estaciones de calidad del aire en las zonas de Curicó y Talca	. 18
2.3	. Efectos del material particulado en el ser humano	. 21
2.4	. Representación material particulado MP 2.5	. 22
2.5	. Representación material particulado MP 10	. 23
2.6	. Orange Pi one	. 24
2.7	. Arduino UNO	. 25
2.8	. Monitor atenuación beta MP10, MP2,5	. 27
3.1	. Sensor sds021	. 30
3.2	. Funcionamiento del sensor con dispersión láser	. 31
3.3	. Sensor PPD42	. 31
3.4	. Funcionamiento interno del sensor	. 32
3.5	. Componentes internos del sensor	. 32
3.6	. Diagrama de instalación del sensor de calidad del aire con Arduino .	. 33
3.7	. Sensor GP2Y1010A	. 34
3.8		
3.9		
3.1	0. Sensor DSM501A	. 37
3.1	1. Escenario general de pruebas	. 38
3.1	2. Escenario con cumplimiento de las normativa de calidad primaria $$.	. 40
3.1	3. Dispositivo de prueba para comparación de sensores	. 42
3.1	4. Plataforma de descarga de datos capturados por la estación ubicada	
	en Curicó	. 43
3.1	5. Formato de datos almacenados, pruebas iniciales por segundo	. 45
	6. Datos capturados primera sesión de pruebas Sensor PPD42NS $$	
3.1	7. Datos capturados primera sesión de pruebas Sensor DSM501A $\ . \ . \ .$. 46
3.1	8. Datos capturados primera sesión de pruebas Sensor GPY1010AAU01	F 47
	9. Datos capturados segunda sesión de pruebas Sensor SDS021 $\ \ldots$.	
3.2	0. Datos capturados segunda sesión de pruebas Sensor BL25B1 $\ . \ . \ .$	
3.2	1. comando instalación numpy	. 52

3.22.	Datos capturados segunda sesión de pruebas Sensor SDS021	53
3.23.	Datos capturados segunda sesión de pruebas Sensor SDS021	54
4.1.	Dispositivo final montado en su contenedor	59
4.2.4.3.	Diagrama de conexión de dispositivos	60
	del sistema	61
4.4.	Arquitectura de comunicación entre la orange pi y la base de datos .	64
4.5.	Datos almacenados en la base de datos	66
A.1.	Gráfico que muestra la relación entre el sensor PPD42NS y el sensor	
	de atenuación beta del gobierno, material particulado MP2.5 $$	88
A.2.	Gráfico que muestra la relación entre el sensor PPD42NS y el sensor	
	de atenuación beta del gobierno, material particulado MP10	89
A.3.	Gráfico que muestra la relación entre el sensor DSM501A y el sensor	
	de atenuación beta del gobierno, material particulado MP2.5	89
A.4.	Gráfico que muestra la relación entre el sensor DSM501A y el sensor	
	de atenuación beta del gobierno, material particulado MP10	90
A.5.	Gráfico que muestra la relación entre el sensor GP2Y1010AAU0F y el	
	sensor de atenuación beta del gobierno, material particulado MP2.5 .	90
A.6.	Gráfico que muestra la relación entre el sensor GP2Y1010AAU0F y el	
	sensor de atenuación beta del gobierno, material particulado MP10 .	91
A.7.	Gráfico que muestra la relación entre el sensor SDS021 y el sensor de	
	atenuación beta del gobierno, material particulado MP2.5	91
A.8.	Gráfico que muestra la relación entre el sensor SDS021 y el sensor de	
	atenuación beta del gobierno, material particulado MP10	92
A.9.	Gráfico que muestra la relación entre el sensor BL25B1 y el sensor de	
	atenuación beta del gobierno, material particulado MP2.5	92
A.10	Gráfico que muestra la relación entre el sensor BL25B1 y el sensor de	
	atenuación beta del gobierno, material particulado MP10	93
	, 1	

ÍNDICE DE TABLAS

	p	ágina
2.1.	Costo de componentes	. 28
A.1.	Tabla de características sensor SDS021	. 78
A.2.	Tabla de características sensor PPD42	. 79
A.3.	Tabla de características sensor GP2Y1010AU0F	. 79
A.4.	Tabla de características sensor DSM501A	. 80
A.5.	Tabla de características sensor BL25B1	. 80