ÍNDICE

l.	INTRODUCCIÓN	1
	1.1 Hipótesis	2
	1.2 Objetivo general	2
	1.2.1 Objetivos específicos	2
II.	REVISIÓN BIBLIOGRÁFICA	4
	2.1 Jugos y néctares de fruta	4
	2.2 Industria de jugos envasados a nivel mundial	5
	2.3 Industria de jugos y néctares envasados a nivel nacional	5
	2.4 Materias primas	6
	2.4.1 Frutas	6
	2.4.2 Aditivos	7
	2.5 Presencia e importancia de la determinación de metales en jugos y néctares	7
	2.6 Métodos para la determinación de metales	9
III.	MATERIALES Y MÉTODOS	11
	3.1 Ubicación del ensayo	11
	3.2 Material experimental	11
	3.3 Soluciones y reactivos empleados	12
	3.4 Preparación de las muestras	13
	3.4.1 Optimización de metodología	13
	3.5 Análisis de datos	15
IV.	RESULTADOS Y DISCUSIÓN	17

	4.1 Análisis por Espectrometría de Absorción Atómica de Llama17
	4.1.2 Análisis del contenido mineral en jugos y néctares según su origen20
	4.2 Contenido de metales de acuerdo a su clasificación como jugos o néctares21
	4.3 Contenido de metales de acuerdo a la región de producción25
	4.4 Contenido de metales de jugos y néctares de acuerdo al (a los) tipo(s) de fruta declarados en sus etiquetas
V.	CONCLUSIONES
VI.	BIBLIOGRAFÍA38
ANEX	OS41

INDICE DE CUADROS

Cuadro 1: Cantidad de sólidos solubles y azúcar añadida permitida para jugos y néctares de frutas en producto terminado (RSA, 2014)
Cuadro 2: Cantidad de macronutrientes y micronutrientes que pueden aportar los jugos y néctares de acuerdo a la ingesta diaria recomendada (FDA, 2013; Szymczycha-Madeja et al 2014)
Cuadro 3: Comparación entre el método de digestión ácida convencional y digestión asistida por un horno microondas (De Oliveira, 2003; Ojeda et al., 2005)9
Cuadro 4: Clasificación del material experimental de acuerdo a su origen, marca y frutas declaradas en su etiqueta
Cuadro 5: Programa de trabajo de digestión ácida "Jugos 1" para microondas13
Cuadro 6: Programa de trabajo de digestión ácida "Jugos 2" para microondas14
Cuadro 7: Concentraciones de metales utilizados para cada una de las curvas de calibración15
Cuadro 8: Resumen de las concentraciones de los metales analizados (Ca, Mg, K, Na, Mn, Cu, Fe, Zn) mediante espectrometría de absorción atómica
Cuadro 9: Concentraciones de cada uno de los metales analizados de acuerdo a su categoría (jugo o néctar) y sus medidas de tendencia central
Cuadro 10: Concentraciones de cada uno de los elementos metálicos analizados de acuerdo a la región de producción y sus medidas de tendencia central
Cuadro 11: Diferencias significativas (p≤0,05) entre grupos homogéneos para los cationes Ca K, Na y Cu de acuerdo al estudio por región de origen analizado estadísticamente mediante Statgraphics Centurion XVI
Cuadro 12: Concentraciones de cada uno de los elementos metálicos analizados de acuerdo a (a los) tipo(s) de fruta(s) declarado en su etiqueta y sus medidas de tendencia central32
Cuadro 13: Diferencias significativas (p≤0,05) entre grupos homogéneos para los cationes Ca, Mg, K y Mn de acuerdo al estudio por frutas declaradas en la etiqueta de jugos y néctares35

ÍNDICE DE FIGURAS

Figura 1: Variedades de jugos y néctares preferidos por los consumidores en el mercado
nacional (Huber, 2011)6
Figura 2: Representación de los dos primeros componentes del análisis de componentes principales, PCA, realizado para el contenido mineral de jugos/néctares nacionales y extranjeros analizado mediante espectrometría de absorción atómica
Figura 3: Gráficos de caja y bigotes para la concentración de los elementos metálicos (Ca, Mg, K, Na, Mn, Cu, Fe y Zn) analizados mediante espectrometría de absorción atómica23
Figura 4: Representación de los dos primeros componentes del análisis de componentes principales, PCA, realizado para el contenido mineral de la clasificación por jugos o néctares analizado mediante espectrometría de absorción atómica
Figura 5: Representación de los dos primeros componentes del análisis de componentes principales, PCA, realizado para el contenido mineral de acuerdo a la región de origen
analizado mediante espectrometría de absorción atómica30