INDICE DE MATERIAS

1	I. INTRODUCCION	1
	1.1. Hipótesis	3
	1.2. Objetivo general	3
	1.3. Objetivos específicos	3
2	2. REVISION BIBLIOGRAFICA	4
	2.1. Importancia del Olea europea (Olivo) en el Mundo	4
	2.2. Requerimiento de clima y suelo	5
	2.3. Riego	7
	2.3.1.Formas de Riego	7
	2.4. Monitoreo de estado Hídrico de árboles	9
	2.4.1. Potencial hídrico de Xilema (ψ)	9
	2.5. Espectrometría en cultivos	10
	2.6. La radiación Electromagnética	11
	2.7. Espectrometría de infrarrojo cercano	12
	2.8. Índices de agua (WI y WI-2)	14
	2.9. Índice de vegetación de diferencia normalizada (NDVI 11 y NDVI 13)	15
	2.10. Análisis de regresión por mínimos cuadrados parciales (PLS)	15
	3. MATERIALES Y METODOS	17
	3.1. Aspectos generales de la parcela experimental	17
	3.2. Tratamientos de Riego	18
	3.3. Mediciones de terreno	18
	3.4. Potencial hídrico de xilema	19
	3.5. Reflectancia espectral	19
	3.6. Calibración de las mediciones en terreno	21
	3.7. Análisis de la información espectral	21
	3.7.1. Especificación del formato del software 157	22
	3.8. Análisis con Matlab para cálculo de índices	22
	3.9. Análisis de regresión por mínimos cuadrados (PLS) para la construcción del	
	modelo	26
	3.10. Análisis estadístico	26
4.	RESULTADOS Y DISCUSION	30
	4.1. Análisis descriptivo	30
	4.2. Análisis de la reflectancia espectral medida en terreno	31
	4.3. Índices v/s potencial de xilema por fechas	33
	4.4. Análisis de modelo PLS	34
5.	CONCLUSION	37
6.	BIBLIOGRAFIA	38

INDICE DE CUADROS

Cuadro 1. Temperaturas críticas y efecto en diferentes estados fenológicos en olivo6
Cuadro 2. Coeficientes de cultivos, Evapotranspiración potencial y evapotranspiración del
Olivo en dos sectores del valle del Huasco8
Cuadro 3: Niveles máximos de Potencial hídrico de xilema para cada tratamiento18
Cuadro 4: Índices utilizados en Software Matlab24
Cuadro 5: Resumen estadístico de las fechas del ensayo, agrupando los valores de
potencial de xilema promediados de cada fecha del ensayo, junto con sus desviaciones
estándar, rango, mínimos y máximos30
Cuadro 6. Prueba de Múltiples Rangos de los potenciales xilemáticos para los tratamientos
del ensayo31
Cuadro 7. Valor de Mínimos y Máximos de las reflectancias más características de cada
fecha del ensayo32
Cuadro 8: Valores de coeficiente de determinación para la comparación entre los índices
espectrales y potencial de xilema para cada fecha del ensayo33
Cuadro 9: Valores de coeficiente de determinación r ² para el análisis de calibración PLS,
obtenidos a partir de los datos del equipo MicroNIR1700 y los potenciales de Xilema35

INDICE DE FIGURAS

Figura 1: Diagrama de la cámara de presión tipo Scholander	.10	
Figura 2: Espectro electromagnético, Manual de equipo Artinaid, USA, 2013	.12	
Figura 3: Absorción de la radiación electro magnética adaptado de Russell 2013. (Ep		
representa la energía potencial, E1 y E2 son energías independientes) (Russell, 2013)	.13	
Figura 4: Diferentes configuraciones de medida espectroscópica adaptada de Roos,		
2003	.14	
Figura 5: Imagen aérea de la zona experimental con los tratamientos de riego. Fuente:		
Google Earth	.17	
Figura 6: Marcas correspondiente a cada tratamiento confeccionadas para ser instaladas	ì	
en terreno	.18	
Figura 7: Orden de los datos descargados del equipo MicroNIR1700	.19	
Figura 8: Imagen de Cámara de Presión PMS Instrument, modelo 1000, USA	.20	
Figura 9: Espectrómetro MicroNIR1700	.20	
Figura 10: Software MicroNIR157	.21	
Figura 11: Imagen correspondiente a los formatos de descarga del equipo MicroNIR1700	.22	
Figura 12: Imagen correspondiente a los datos descargados en formato Excel del Equipo		
MicroNIR1700	.22	
Figura 13: Software SK-Utalca	.23	
Figura 14: Software Matlab generando un Wavelenght filter	.23	
Figura 15: Lectura de los datos descargados con el Wavelenght filter en formato Microsoft		
Excel	24	
Figura 16: Software Matlab realizando una comparación entre los índices espectrales con		
los datos del equipo MicroNIR y Scholander	25	
Figura 17: Imagen correspondiente al orden de los datos de los índices y equipos		
ordenados en un Microsoft Excel	.25	
Figura 18: Datos cargados en Software Unscrambler versión 9.2	.26	
Figura 19: Datos incorporados a Software Statgraphics Centurion XV	.27	

Figura 21: Software Statgraphics Centurion XV, mostrando las tablas de prueba se eligió en		
este ensayo28		
Figura 22: Software Statgraphics Centurion XV, mostrando como es el recorrido para elegir		
las gráficas para este ensayo29		
Figura 23: Grafico de cajas y bigotes con los datos de las 6 fechas de medición del		
ensayo		
Figura 24: Ejemplo de la curva espectral del equipo MicroNIR1700 de la fecha 03/03/1532		
Figura 25: Ejemplo de correlación de índice espectral NDSI 11 y potenciales de xilema para		
la fecha 12/03/15		
Figura 26: Ejemplo de correlación de índice espectral NDSI 13 y potenciales de xilema la		
fecha 12/03/15		
Figura 27: Ejemplo de correlación de potencial de xilema estimado calibrado para la fecha		
29/01/15		
Figura 28: Ejemplo de correlación de potencial de xilema estimado calibrado para la fecha		
07/01/15		