ÍNDICE	Pág.
1. INTRODUCCIÓN.	10
1.1 Contextualización de la problemática.	10
1.2. Objetivos.	11
1.3. Metodología de trabajo.	12
2. MARCO TEÓRICO	14
2.1 Eficiencia energética y tendencias mundiales.	14
2.2 Realidad energética de Chile.	15
2.3 Aislación y confort térmico.	17
2.4 Normativa chilena para la aislación de viviendas.	19
2.5 Normativa chilena para fachadas ventiladas.	21
2.6 Definiciones.	23
2.7 Primeros antecedentes de fachadas ventiladas.	25
2.8 Método aplicado en Chile.	27
2.9 Alternativas en el mercado.	28
2.10 Ventajas de la fachada ventilada.	29
3. DESARROLLO DEL PROYECTO	30
3.1 Factibilidad técnica del sistema	30
3.2 Elementos para la construcción de la fachada	51
3.3 Determinación del diseño para la fachada ventilada.	54
3.4 Cálculo del mejoramiento térmico con la fachada medianamente ventilada.	59
4. IMPLEMENTACIÓN Y MEDICIÓN DEL SISTEMA	64
4.1 Medición de parámetros de invierno.	64
4.2 Utilización de software Ecotect	71
4.3 Situación de confort simulada.	81
5. ANÁLISIS DE PRECIOS Y COSTOS	83

	5.1 Análisis energético con Ecotect	83
	5.2 Análisis de precio unitario	84
6.	ANÁLISIS DE RESULTADOS.	86
7.	CONCLUSIONES Y RECOMENDACIONES.	89
8.	BIBLIOGRAFÍA	92
9.	ANEXOS	95
	9.2 Mediciones de temperatura interior y exterior antes de la fachada, temperatura en °C	95
	9.3 Medición de humedad antes de la fachada interior y exterior, humedad en %.	96
	9.4 Medición de temperaturas después de la fachada en el interior y exterior en °C	97
	9.5 Medición de humedades después de la fachada en el interior y exterior en %.	98
	9.6 Tabla de datos gradiente de parámetros antes de la fachada	99
	9.7 Tabla de datos gradiente de parámetros después de la fachada	100
	9.8 Tabla de mediciones con Ecotect y data logger	101

INDICE DE CUADROS

Cuadro	Pág.
Cuadro 1. Distribución de energía eléctrica en Mwh en el Maule	16
Cuadro 2. Comparación de temperaturas del estudio	18
Cuadro 3. Reglamentación Térmica sobre acondicionamiento térmico en viviendas	19
Cuadro 4. Resistencias y transmitancias de acuerdo a las zonas delimitadas en Chile	20
Cuadro 5. Comunas de la provincia de Curicó con sus respectivas zonas	20
Cuadro 6. Resistencias térmicas en relación a la disposición del muro y configuración	21
Cuadro 7. Coeficiente de ventilación en relación al cociente de S/L	22
Cuadro 8. Elementos del perfil Aguas Negras y Santa Fe	35
Cuadro 9. Elementos del perfil 2 Aguas Negras y Santa Fe	35
Cuadro 10. Viviendas de Aguas Negras con su individualización de elementos de fachada	36
Cuadro 11. Tabla de viviendas de Santa Fe con su individualización de elementos de fachada.	36
Cuadro 12: Elementos del perfil de El Boldo	37
Cuadro 13. Elementos del perfil 2 de El Boldo	37
Cuadro 14. Tabla de viviendas Del Boldo con su individualización de elementos de fachada	38
Cuadro 15. Elementos del perfil Bombero Garrido y Vaticano	39
Cuadro 16. Viviendas de Bombero Garrido y Vaticano con su individualización de elemento fachada	
Cuadro 17. Elementos del perfil 1 Rauquén y Sol de septiembre	40
Cuadro 18. Elementos del perfil 2 de Rauquén y Sol de Septiembre	40
Cuadro 19. Tabla de viviendas de Rauquén y Sol de Septiembre con su individualización de elementos de fachada	41
Cuadro 20. Elementos del perfil Guaiquillo	41
Cuadro 21. Tabla de viviendas de Guaiquillo con su individualización de elementos de fachada	42
Cuadro 22. Características de las cámaras de acuerdo a su ventilación	47

Cuadro 23. Representación gráfica de las diversas tolerancias del espesor de la cámara	50
Cuadro 24. Resistencia y transmitancia térmica del muro original	.56
Cuadro 25. Resistencia y transmitancia térmica de la fachada ventilada	56
Cuadro 26. Coeficiente de ventilación en base a Rt de fachadas y abertura de cámara de aire	.62
Cuadro 27. Comparación de resistencias térmicas antes y después de la fachada ventilada	63
Cuadro 28. Tabla de requerimiento mensual de habitación con y sin fachada	83
Cuadro 29: Precio unitario por m ² de fachada ventilada	.84
Cuadro 30: Costos en moneda nacional de cada uno de los ítems	.85
Cuadro 31 Resumen de diferencias de mediciones.	88

INDICE DE GRÁFICOS

Gráfico	Pág.
Gráfico 1: Evolución del consumo energético y PIB de Chile.	15
Gráfico 2. Comportamiento del sol y las horas de luz que entrega.	31
Gráfico 3. Resistencia térmica referencial de Aguas Negras de cada vivienda	43
Gráfico 4. Resistencia térmica referencial de Santa Fe de cada vivienda.	43
Gráfico 5. Resistencia térmica referencial de Bombero Garrido y Vaticano de cada vivienda	,.44
Gráfico 6. Resistencia térmica referencial de Guaiquillo de cada vivienda	44
Gráfico 7. Resistencia térmica referencial de El Boldo de cada vivienda	45
Gráfico 8. Resistencia térmica referencial Rauquén y Sol de Septiembre de cada vivienda	45
Gráfico 9. Resistencia térmica referencial total de Curicó según reglamentación	46
Gráfico 10. Comportamiento de plancha de fibrocemento con respecto al espesor	51
Gráfico 11. Comportamiento de plancha de OSB con respecto al espesor espesor	52
Gráfico 12. Comportamiento de plancha de terciado con respecto al espesor	52
Gráfico 13. Relación entre las emisividades de los elementos de la fachada y la resisten cámara de aire	
Gráfico 14. Evolución de la temperatura antes de la fachada interior y exterior	65
Gráfico 15. Evolución de la humedad antes de la fachada	66
Gráfico 16. Diagrama de Givoni para el confort térmico en invierno	67
Gráfico 17. Evolución de la temperatura después de la fachada	68
Gráfico 18. Evolución de la temperatura después de la fachada	69
Gráfico 19. Diagrama de Givoni para el confort térmico en invierno	70
Gráfico 20. Temperatura interior medida v/s la temperatura exterior medida Julio	74
Gráfico 21 Temperatura interior medida v/s la temperatura exterior medida Agosto	74
Gráfico 22 Temperatura interior medida v/s la temperatura exterior medida Septiembre	75
Gráfico 23 Temperatura interior medida v/s la temperatura exterior medida Octubre	75

Gráfico 24 Comparación de temperatura interior real y teórica con respecto a temperatura exterior
real
Gráfico 25 Temperatura interior medida v/s la temperatura simulada con Ecotect Julio
Gráfico 26 Temperatura interior medida v/s la temperatura simulada con Ecotect Agosto78
Gráfico 27 Temperatura interior medida v/s la temperatura simulada con Ecotect Septiembre81
Gráfico 28. Temperatura interior medida v/s la temperatura simulada con Ecotect Octubre82
Gráfico 29. Diferencia de disminución de temperatura
Gráfico 30 Diferencia de aumento de humedad